INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
B.Tech IV Semester End Examinations (Regular), November - 2020

Regulation: IARE-R18
ELECTROMAGNETIC WAVES AND TRANSMISSION LINES
Time: 2 Hours
(ECE)
Max Marks: 70

Answer any Four Questions from Part A
 Answer any Five Questions from Part B

PART - A

1. Write a short note on conduction current, convection current and relaxation time.
2. State and explain Ampere's circuit law.
3. State and prove Poynting theorem.
4. Find the parameters of lossless transmission line.
5. Explain the principle of short circuited termination of transmission line.
6. Write about the reflection and refraction of an oblique incidence.
7. State Faraday's law and write the expression for Maxwell's equation of time varying fields.
8. What is the second Maxwell's equation? Give the relation between $\mathrm{E} \& \mathrm{~V}$?

PART - B

9. Determine the capacitance of a parallel plate capacitor of area S separated by a distance d. Take ϵ as its permittivity.
[10M]
10. The parallel plates of a capacitor are separated by a distance ' d ' having potentials V_{0} and 0 respectively.Find the instantaneous potential of the parallel plate.
[10M]
11. Find the torque developed by a small circular loop of radius 'b' carrying a current 'I' in a uniform magnetic field of flux density B.
12. Explain the procedure to determine the inductance of an inductor.
[10M]
13. Determine the expressions for reflection coefficient and transmission coefficient for a normal incidence.in a plane dielectric boundary
[10M]
14. A uniform plane wave with $\mathrm{E}=E_{x} a_{x}$ propagates in a lossless medium $\left(\epsilon_{r}=4, \mu_{r}=1, \sigma=0\right)$ in the +z -direction. Assume that E is sinusoidal with a frequency $(100 \mathrm{MHz})$ and has a maximum value of $+10^{-4} \mathrm{~V} / \mathrm{m}$ at $\mathrm{t}=0$ and $\mathrm{z}=1 / 8 \mathrm{~m}$. Find magnetic field intensity.
[10M]
15. Find the inductance, resistance and conductance per unit length of the 100Ω distortion less transmission line of attenuation constant $0.01 \mathrm{~dB} / \mathrm{m}$. Take Capacitance $=0.2 \mathrm{nF} / \mathrm{m}$
[10M]
16. Find the attenuation constant of a lossy transmission line with distributed parameters R, L, G and C. [10M]
17. Write the procedure for double stub matching using Smith chart as an admittance chart.
[10M]
18. A 50Ω transmission line is connected to a load $Z_{L}=35-\mathrm{j} 47.5 \Omega$. Find the position of the short circuited stub required for impedance matching.
[10M]
