Hall Ticket No	o Qu	estion Paper Code: AECB13
	NSTITUTE OF AERONAUTICAL ENGINE (Autonomous)	ERING
EL.	B.Tech IV Semester End Examinations (Regular), November – Regulation: IARE–R18 ECTROMAGNETIC WAVES AND TRANSMISS	- 2020 ION LINES
Time: 2 Hours	(ECE)	Max Marks: 70
	Answer any Four Questions from Part A Answer any Five Questions from Part B	
	$\mathbf{PART} - \mathbf{A}$	

1.	Write a short note on conduction current, convection current and relaxation time.	[5M]
2.	State and explain Ampere's circuit law.	[5M]
3.	State and prove Poynting theorem.	[5M]
4.	Find the parameters of lossless transmission line.	[5M]
5.	Explain the principle of short circuited termination of transmission line.	[5M]
6.	Write about the reflection and refraction of an oblique incidence.	[5M]
7.	State Faraday's law and write the expression for Maxwell's equation of time varying fields.	[5M]
8.	What is the second Maxwell's equation? Give the relation between E & V?	[5M]

$\mathbf{PART} - \mathbf{B}$

9. Determine the capacitance of a parallel plate capacitor of area S separated by a distance d. Take ϵ as its permittivity. [10M]

10. The parallel plates of a capacitor are separated by a distance 'd' having potentials V_0 and 0 respectively. Find the instantaneous potential of the parallel plate.

[10M]

[10M]

- 11. Find the torque developed by a small circular loop of radius 'b' carrying a current 'I' in a uniform magnetic field of flux density B. [10M]
- 12. Explain the procedure to determine the inductance of an inductor.
- 13. Determine the expressions for reflection coefficient and transmission coefficient for a normal incidence.in a plane dielectric boundary [10M]
- 14. A uniform plane wave with $E = E_x a_x$ propagates in a lossless medium ($\epsilon_r = 4, \mu_r = 1, \sigma = 0$) in the +z-direction. Assume that E is sinusoidal with a frequency (100 MHz) and has a maximum value of $\pm 10^{-4}$ V/m at t=0 and z=1/8m. Find magnetic field intensity. [10M]
- 15. Find the inductance, resistance and conductance per unit length of the 100Ω distortion less transmission line of attenuation constant 0.01 dB/m. Take Capacitance = 0.2 nF/m [10M]
- 16. Find the attenuation constant of a lossy transmission line with distributed parameters R, L, G and C. [10M]
- 17. Write the procedure for double stub matching using Smith chart as an admittance chart. [10M]
- 18. A 50 Ω transmission line is connected to a load $Z_L=35$ -j47.5 Ω . Find the position of the short circuited stub required for impedance matching. [10M]

 $-\circ\circ\bigcirc\circ\circ-$