	Hall Ticket No Question Paper Code	: AITB05	
	INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)		
	B.Tech IV Semester End Examinations (Regular), November – 2020 Regulation: IARE–R18		
т: ,	me: 2 Hours (CSE IT) Max M	Iarks: 70	
<u></u>	me: 2 Hours (CSE IT) Max M Answer any Four Questions from Part A	arks: 70	
	Answer any Five Questions from Part B		
	$\mathbf{PART} - \mathbf{A}$		
1.	Describe the role of space complexity and time complexity of a program?	[5M]	
2.	What are biconnected components? Explain.	[5M]	
3.	What are the steps for dynamic programming? Explain principal of optimality.	[5M]	
4.	Write short notes on graph colouring.	[5M]	
5.	Explain chromatic number decision problem.	[5M]	
6.	What is an algorithm? How it differ from flowchart? Discuss key characteristics of algorithm.	[5M]	
7.	How do you solve job sequencing with deadlines using greedy method questions?	[5M]	
8.	Explain intractable problems with examples.	[5M]	
$\mathbf{PART} - \mathbf{B}$			
9.	Explain quick sort algorithm and simulate it for the following data 52, 37, 63, 14, 17, 8, 6, 25.	[10M]	
10.	Demonstrate binary search method to search key = 23, form the array $A = <2,5,8,12,16,23,38,56,72,91$	>. [10M]	
11.	Describe the breadth first search algorithm of a graph and explain with an example.	[10M]	
12.	Write non-recursive algorithm for in-order binary tree traversal. Illustrate about disjoint set operation	ons. [10M]	
13.	Consider 0-1 Knapsack capacity W=50, w=(10,20,30) and v=(60,100,120). Find the maximum programming.	ofit using [10M]	
14.	What is travelling salesman problem and how is it modeled as a graph problem?	[10M]	
15.	Apply backtracking technique to solve the following instance of the subset sum problems.s= $(1,3,4,5)$	& d=11. [10M]	

- 16. Differentiate branch and bound and back tracking algorithm. Write the steps for backtracking and branch-andbound algorithms. [10M]17. What is P, NP, NP-complete and NP-hard problems? Explain "P=NP ?" problem. [10M]
- [10M]
- 18. Write notes on deterministic and non-deterministic algorithm with example.

 $-\circ\circ\bigcirc\circ\circ-$