

$\mathbf{MODULE}-\mathbf{I}$

1. (a) Use the Gauss-Jordan elimination method to compute the inverse of the matrix \vec{r}

$$\begin{bmatrix} 1 & 0 & 4 \\ 2 & -2 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$
(b) For the matrix $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$, find the values of x and y so that $A^2 + xI = yA$, where I is an identity

matrix. Hence find A^{-1}

$\mathbf{MODULE}-\mathbf{II}$

2. (a) Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ [7M] (b) Diagonalise the matrix and obtain the modal matrix for $A = \begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{bmatrix}$. Hence find A^5 . [7M]

MODULE – III

- 3. (a) Find the shortest distance from origin to the surface $xyz^2 = 2$. [7M] (b) If $x = \sqrt{vw}, y = \sqrt{wu}, z = \sqrt{uv}$ and $u = r \sin \theta . \cos \phi, v = r \sin \theta \sin \phi, w = r \cos \theta$, calculate $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$ [7M]
- 4. (a) Find the maximum value of $x^m y^n z^p$ when x + y + z = a. [7M]

(b) Show that the Rolle's theorem is applicable for the function $f(x) = e^{-x} \sin x$ in the interval $[0, \pi]$. [7M]

[7M]

$\mathbf{MODULE}-\mathbf{IV}$

5.	(a) Solve: $(D^2 + 5D - 6) y = \sin 4x$.	[7M]
	(b) Solve $(D^2 + 2) y = x^2 e^{3x} + e^x \cos 2x$	[7M]
6.	(a) Solve $(D^2 + 2D + 1) y = e^{-x} lnx$, by variation of parameters method.	[7M]
	(b) Solve $(D^2 - 1) y = \cos x$	[7M]

$\mathbf{MODULE} - \mathbf{V}$

7. (a) Obtain the Fourier series of $f(x) = \frac{(\pi - x)}{2}$ in the interval $(0, 2\pi)$ and hence deduce $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ [7M][7M]

- (b) Find the Fourier series of $f(x) = x^3$ in $(-\pi, \pi)$.
- 8. (a) Represent $f(x) = \sin \frac{\pi x}{L}$ in 0<x<L by a Fourier cosine series. [7M]
 - (b) Express the function $f(x) = x \pi$ as Fourier series in the interval $(-\pi, \pi)$. [7M]

 $-\circ\circ\bigcirc\circ\circ-$