INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal-500043, Hyderabad
B.Tech I SEMESTER END EXAMINATIONS (REGULAR) - APRIL 2022
Regulation:UG-20

LINEAR ALGEBRA AND CALCULUS

Time: 3 Hours
(COMMON TO ALL BRANCHES)
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Use the Gauss-Jordan elimination method to compute the inverse of the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 4 \tag{7M}\\
2 & -2 & 1 \\
-1 & 1 & -1
\end{array}\right]
$$

(b) For the matrix $\mathrm{A}=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]$, find the values of x and y so that $\mathrm{A}^{2}+x I=y A$, where I is an identity matrix. Hence find A^{-1}

MODULE - II

2. (a) Find the eigen values and eigen vectors of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(b) Diagonalise the matrix and obtain the modal matrix for $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3\end{array}\right]$. Hence find $A^{5} \cdot[7 \mathbf{M}]$

MODULE - III
3. (a) Find the shortest distance from origin to the surface $\mathrm{xyz}^{2}=2$.
(b) If $x=\sqrt{v w}, y=\sqrt{w u}, z=\sqrt{u v}$ and $u=r \sin \theta \cdot \cos \phi, v=r \sin \theta \sin \phi, w=r \cos \theta$, calculate $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$
4. (a) Find the maximum value of $x^{m} y^{n} z^{p}$ when $x+y+z=a$.
(b) Show that the Rolle's theorem is applicable for the function $f(x)=e^{-x} \sin x$ in the interval $[0, \pi]$.
5. (a) Solve: $\left(D^{2}+5 D-6\right) y=\sin 4 x$.
(b) Solve $\left(D^{2}+2\right) y=x^{2} e^{3 x}+e^{x} \cos 2 x$
6. (a) Solve $\left(D^{2}+2 D+1\right) y=e^{-x} \ln x$, by variation of parameters method.
(b) Solve $\left(D^{2}-1\right) y=\cos x$

MODULE - V

7. (a) Obtain the Fourier series of $f(x)=\frac{(\pi-x)}{2}$ in the interval $(0,2 \pi)$ and hence deduce $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$
(b) Find the Fourier series of $f(x)=x^{3}$ in $(-\pi, \pi)$.
8. (a) Represent $f(x)=\sin \frac{\pi x}{L}$ in $0<\mathrm{x}<\mathrm{L}$ by a Fourier cosine series.
(b) Express the function $f(x)=x-\pi$ as Fourier series in the interval $(-\pi, \pi)$.
