INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal-500043, Hyderabad
B.Tech I SEMESTER END EXAMINATIONS (REGULAR) - APRIL 2022
Regulation:UG-20
ENGINEERING PHYSICS
(Common to AE|ECE|EEE \mid ME \mid CE Branches)

Time: 3 Hours
Max Marks: 70

Answer ALL questions in Module I and II
 Answer ONE out of two questions in Modules III, IV and V
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

MODULE - I

1. (a) Discuss the Davisson-Germer experiment. Explain the verification of De-broglie hypothesis using Davission-Germer experiment.
(b) Find the De-Broglie wavelength for an electron moving with $1 / 10$ of the velocity of light.

MODULE - II
2. (a) Draw and explain the band diagram of p type and n type extrinsic semiconductors at $\mathrm{T}=0 \mathrm{~K}$ and $\mathrm{T}=300 \mathrm{~K}$. Discuss the effect of both temperatures.
(b) A copper strip 2.0 cm wide and 1.0 mm thick is placed in a magnetic field with $\mathrm{B}=1.5 \mathrm{~Wb} / \mathrm{m}^{2}$. If a current of 200 A is setup in the strip, calculate the Hall voltage that appears across the strip. Assume $R_{H}=6 \times 10^{-7} \mathrm{~m}^{3} / \mathrm{C}$.

MODULE - III

3. (a) Explain construction and working of $\mathrm{He}-\mathrm{Ne}$ laser. Write four applications of lasers.
(b) Find the energy band gap in eV in a He-Ne laser that produces light of wavelength $5318 A^{0}$.
4. (a) Discuss optical fiber communication system with block diagram. What are the applications of fiber optics?
(b) A step-index fiber has a core index of refraction of $n_{1}=1.425$. The acceptance angle for light entering the fiber from the air is found to be 8.5^{0}. What is the numerical aperture of the fiber?
[7M]

MODULE - IV

5. (a) Obtain the conditions for observing dark and bright circular fringes in Newton rings experiment.
[7M]
(b) In Newton's rings experiment, the diameter of the $15^{t h}$ ring was found to be 0.59 cm and that of the $5^{\text {th }}$ ring is 0.336 cm . If the radius of curvature of the lens is 100 cm , find the wavelength of the light.
6. (a) Discuss Fraunhoffer diffraction from the single slit. Extend this to get conditions for maxima and minima.
(b) A diffraction grating used at normal incidence gives a line of $5500 A^{0}$ in a certain order superposed on the violet line $4050 A^{0}$ of the next higher order. If the angle of diffraction is 40°, how many lines per cm are there in the grating?

MODULE - V

7. (a) Find differential equation for damped harmonic motion and discuss various types of damping.

(b) A particle executes SHM of period 10 sec and amplitude 5 cm . Calculate the maximum velocity of oscillation.
8. (a) What is the difference between transverse and longitudinal waves? Obtain equation of motion of transverse waves
(b) Calculate the speed of transverse waves in a wire of $1 \mathrm{~mm}^{2}$ cross section under the tension produced by 0.1 kg wt. Specific gravity of material of wire is $9.81 \mathrm{gm} / \mathrm{cm}^{3}$ and $g=9.81 \mathrm{~m} / \mathrm{sec}^{2}$.
[7M]

$$
-0 \circ \bigcirc \circ \circ-
$$

