Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) With the help of a diagram explain the mission profiles of civil and military aircrafts. Determine the relation for the measurement of equivalent airspeed. [BL: Understand| CO: 1|Marks: 7]
(b) Write the expression for the relation between temperature and height in the standard atmosphere model and explain this with a neat sketch.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Elucidate the total airplane drag and types, drag reduction methods. Discuss the effect of Mach number on lift and drag coefficient with relevant graphs. [BL: Understand| CO: 2|Marks: 7]
(b) Discuss about minimum drag speed and minimum power speed. Describe their importance in aircraft performance studies.
[BL: Understand| CO: 2|Marks: 7]

MODULE - III

3. (a) Explain about absolute ceiling, service ceiling and self ceiling for an airplane. How these ceilings are useful for study of the flight performance of an airplane? [BL: Understand| CO: 3|Marks: 7]
(b) Write a note on military aircraft maneuver performance. Explain the equations of motion of an aircraft under maneuvering.
[BL: Understand| CO: 3|Marks: 7]
4. (a) Outline the effect of minimum drag speed of flight path control with neat sketch and graph.
[BL: Understand| CO: 4|Marks: 7]
(b) Determine the high performance specific climb expression in terms of specific excess power.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Describe turning flight in horizontal plane. Draw a sketch and show all the forces involved in this condition.
[BL: Understand| CO: 5|Marks: 7]
(b) An airplane has the following characteristics: $\mathrm{V}=120 \mathrm{kmph}$., EAS, $\mathrm{h}=10,000 \mathrm{~m}, \mathrm{~W}=3,400$ $\mathrm{kg}, \mathrm{W} / \mathrm{S}=24 \mathrm{~kg} / \mathrm{m}^{2}, \mathrm{~L} / \mathrm{D}=10, \mathrm{Ta}=6,200 \mathrm{~kg}$. It makes a 900 turn in 18 seconds maintaining altitude and incidence angle. Calculate the load factor, bank angle, radius of turn, and the thrust horsepower required (air density at $10000 \mathrm{~m}=0.4135 \mathrm{~kg} / \mathrm{m}^{3}$) [BL: Apply| CO: 5|Marks: 7]
6. (a) Illustrate the pull-up maneuvers with neat sketches and also explain the importance of V-n diagram.
[BL: Understand| CO: 5|Marks: 7]
(b) Develop the equations of motion of an aircraft undergoing lateral maneuver or level turn and derive an expression for radius of turn.

MODULE - V

7. (a) Show the effect of flight variables on the landing performance. Explain the landing performance measurement.
[BL: Understand| CO: 6|Marks: 7]
(b) Determine the ground run and airborne distances for the takeoff performance. Explain about each parameters and its importance. [BL: Apply| CO:6|Marks: 7]
8. (a) Enumerate the need of 'trip fuel' and 'the diversion fuel'? Discuss briefly the space available and space required for landing of an aircraft.
[BL: Understand| CO: 6|Marks: 7]
(b) Derive the ground run and airborne distances equations for the landing performance. Explain about each parameters and its importance.
[BL: Apply| CO: 6|Marks: 7]
