INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)
 Dundigal-500043, Hyderabad
 B.Tech IV SEMESTER END EXAMINATIONS (REGULAR/SUPPLEMENTARY) - AUGUST 2023 Regulation: UG-20
 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Time: 3 Hours (ELECTRONICS AND COMMUNICATION ENGINEERING) Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Obtain the expression for the electric field intensity of an infinite long straight line carrying uniform line charge density.
[BL: Understand| CO: 1|Marks: 7]
(b) Point charges 1 mC and -2 mC are located at $(3,2,-1)$ and $(-1,-1,4)$ respectively. Calculate the electric force on a 10 nC charge located at $(0,3,1)$ and the electric field intensity at that point.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Illustrate the integral and point form of Maxwell's equations for static fields. Deduce an expression for boundary conditions between two dielectrics. [BL: Understand| CO: 2|Marks: 7]
(b) From the Biot-Savart's law, determine the expression for magnetic field intensity at a point P and distance R from the infinitely long straight current carrying conductor.
[BL: Understand| CO: 2|Marks: 7]

MODULE - III

3. (a) Write a short note on Poynting vector. Determine an expression for Poynting theorem.
[BL: Understand| CO: 3|Marks: 7]
(b) A plane wave travelling in free space has an average Poynting vector of 5 watts $/ m^{2}$. Find magnitude of electric field intensity.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Classify different types of polarization. Write about skin depth and determine the expression for depth of penetration for good conductors.
[BL: Understand| CO: 4|Marks: 7]
(b) Deduce an expression for reflection and transmission cefficients of a plane wave which is incident obliquely with perpendicular polarization.
[BL: Understand| CO: 4|Marks: 7]

MODULE - IV

5. (a) Explain in detail about different types of distortions and also derive the condition for distortionless line.
[BL: Understand| CO: 5|Marks: 7]
(b) A transmission line has the $\mathrm{R}, \mathrm{L}, \mathrm{G}, \mathrm{C}$ parameters, $\mathrm{R}=100 \mathrm{ohm} / \mathrm{m}, \mathrm{L}=80 \mathrm{nH} / \mathrm{m}, \mathrm{G}=0.2$ $\mathrm{mho} / \mathrm{m}$ and $\mathrm{C}=200 \mathrm{pF} / \mathrm{m}$. Consider a traveling wave at 2 G Hz on the line. Find the following
i) Attenuation constant
ii) Phase constant
iii) Phase velocity
iv) Characteristic impedance of the line
[BL: Apply| CO: 5|Marks: 7]
6. (a) Mention different types of loading techniques. Derive the transmission line equation and obtain the solution of it.
[BL: Understand| CO: 5|Marks: 7]
(b) A transmission line with a characteristic impedance of 75 ohm supports a forward-traveling wave with a power of $1 \mu \mathrm{~W}$. The line is terminated in a resistance of 100Ω. Draw the lumped-element equivalent circuit at the interface between the transmission line and the load.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Elaborate the concept of single stub matching on a transmission line and derive the expression for the length of the stub used for matching on a line.
[BL: Understand| CO: 6|Marks: 7]
(b) Lossless transmission line of characteristic impedance $Z_{0}=50 \Omega$ is terminated in a load of impedance $Z_{L}=100+\mathrm{j} 50 \Omega$. Determine the smallest length and the distance 'd' from the load of a single capacitive stub having characteristic impedance $Z_{o c}=75 \Omega$ shorted at its ends, which when connected, will serve the purpose of a perfect match of load with the transmission line.
[BL: Apply| CO: 6|Marks: 7]
8. (a) How the input impedance of a lossless line varies with frequency? Describe in detail about quarter wave transformer.
[BL: Understand| CO: 6|Marks: 7]
(b) A transmission line has $Z_{0}=50 \Omega, Z_{L}=30-\mathrm{j} 50 \Omega$.
i) What is reflection coefficient of the line?
ii) What is the VSWR on the line?
iii) What is the input impedance of the line at length 'l' $=\lambda / 4$? \quad [BL: Apply| CO: $6 \mid$ Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

