Time: 3 Hours
(CSE | CSE(AI\&ML) | CSIT | IT)
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Describe how various rules used for construction of ϵ-NFA with suitable example and also write th steps for NFA with ϵ to NFA conversion with an example. [BL: Understand| CO: 1|Marks: 7]
(b) Differentiate DFA and NFA with an example. Give DFA's accepting the following languages over the alphabet $\{0,1\}$.
i) The set of all strings ending in 00 .
ii) The set of all strings with three consecutive 0's. (not necessarily at the end).
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Illustrate the steps for conversion of regular grammar to finite automata? Construct the FA for the following grammar
$\mathrm{S} \rightarrow \mathrm{aS} / \mathrm{bA} / \mathrm{b}, \mathrm{A} \rightarrow \mathrm{aA} / \mathrm{bS} / \mathrm{a}$
[BL: Understand| CO: 2|Marks: 7]
(b) Convert the following NFA given in Figure 1 into a RE using the state elimination method.
[BL: Apply| CO: 2|Marks: 7]

Figure 1
MODULE - III
3. (a) Enlist any three closure properties of regular languages with an illustration.
[BL: Understand| CO: 3|Marks: 7]
(b) Prove that the given languages are not regular using the pumping lemma.
i) $L=\left\{w=a^{J} b^{K}: J=K\right\}$
ii) $L=\left\{w=a^{J} b^{K}: J>K\right\}$
[BL: Apply| CO: 3|Marks: 7]
4. (a) Summarize about ambiguous Grammar. Check whether the grammar:
$\mathrm{S} \rightarrow \mathrm{aAB}, \mathrm{A} \rightarrow \mathrm{bC} / \mathrm{cd}, \mathrm{C} \rightarrow \mathrm{cd}, \mathrm{B} \rightarrow \mathrm{c} / \mathrm{d}$ is ambiguous or not? [BL: Understand| CO: 4|Marks: 7]
(b) Convert the CFG into CNF
$\mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{Aa}$
A \rightarrow aaA $\mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bbB} \mid \mathrm{b}$
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Differentiate push down automata (PDA) and DPDA with an example. Show that for every PDA there exists a CFG such that $L(G)=N(P)$. [BL: Understand| CO: 5|Marks: 7]
(b) Construct a PDA that accepts the language $L=\left\{a^{n} b^{m} c^{m} d^{n} \mid m, n \geq 1\right\}$ by using an empty stack. [BL: Apply| CO: 5|Marks: 7]
6. (a) Outline the followings:
i) Closure properties of context free languages.
ii) Deterministic context free languages
iii) Deterministic Pushdown Automata. [BL: Understand| CO: 5|Marks: 7]
(b) Convert the grammar CFG to a PDA
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
$\mathrm{E} \rightarrow \mathrm{id}$
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Give an overview of recursively enumerable language. Mention the properties of recursive and non-recursive enumerable languages.
[BL: Understand| CO: 6|Marks: 7]
(b) Construct a Turing machine that will accept the language consists of all palindromes of 0's and 1's?
[BL: Apply| CO: 6|Marks: 7]
8. (a) Describe in detail about different types of Turing machines Compare and contrast the finite state machine, PDA and Turing machine.
[BL: Understand| CO: 6|Marks: 7]
(b) Build Turing machine M, 1011, where
$\mathrm{M}=\left(q_{1}, q_{2}, q_{3}, 0,1,0,1, B, \delta, q_{1}, B, q_{2}\right)$ has moves,
$\delta\left(q_{1}, 1\right)=\left(q_{3}, 0, R\right)$
$\delta\left(q_{3}, 0\right)=\left(q_{1}, 1, R\right)$
$\delta\left(q_{3}, 1\right)=\left(q_{2}, 0, R\right)$
$\delta\left(q_{3}, B\right)=\left(q_{3}, 1, L\right)$
[BL: Apply| CO: 6|Marks: 7]
