INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
(Dundigal-500043, Hyderabad)

B.Tech V SEMESTER END EXAMINATIONS (REGULAR) - DECEMBER 2022
 Regulation:UG20
 HIGH SPEED AERODYNAMICS
 Time: 3 Hours
 (AERONAUTICAL ENGINEERING)
 Max Marks: 70

Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Determine the expression for speed of sound in air (assume air as a perfect gas). Comment about the speed of sound in solids, liquids, and gases.
[BL: Understand| CO: 1|Marks: 7]
(b) At a point in an airflow the pressure, temperature, and velocity are $1 \mathrm{~atm}, 320 \mathrm{~K}$, and $1000 \mathrm{~m} / \mathrm{s}$. Calculate the total temperature and total pressure at this point.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Briefly explain the normal shock and Build the Prandtl relation for normal shock in perfect gas.
[BL: Understand| CO: 2|Marks: 7]
(b) Consider a supersonic flow with $\mathrm{M}=2, \mathrm{P}=1 \mathrm{~atm}$, and $\mathrm{T}=288 \mathrm{~K}$. This flow is deflected at a compression corner through 20°. Calculate $M_{2}, P_{2}, T_{2}, P_{02}$, and T_{02} behind the resulting oblique shock wave.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Develop the area velocity relation. Using this, elucidate the shapes required for the following flight conditions
i) Subsonic diffuser
ii) Supersonic diffuser
iii) Supersonic nozzle
[BL: Understand| CO: 2|Marks: 7]
(b) Air enters a constant-area duct at $M_{1}=3, P_{1}=1 \mathrm{~atm}$, and $T_{1}=300 \mathrm{~K}$. Inside the duct, the heat added per unit mass is $\mathrm{q}=3 \times 10^{5} \mathrm{~J} / \mathrm{kg}$. Calculate the flow properties $M_{2}, P_{2}, T_{2} . \rho_{2}, P_{02}$ and T_{02} at the exit of the duct.
[BL: Apply| CO: 2|Marks: 7]
4. (a) With neat sketches, elucidate isentropic flow through a convergent-divergent nozzle. Draw and explain the Fanno curve.
[BL: Understand| CO: 4|Marks: 7]
(b) Using the results of linearized theory, calculate the lift and wave-drag coefficients for an infinitely thin flat plate in a Mach 2.6 freestream at angles of attack of i) $\alpha=5^{0}$ ii) $\alpha=15^{0}$ iii) $\alpha=30^{0}$ What can you conclude about the accuracy of linearized theory in comparison with exact shock expansion theory from the fundamental perspective.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Summarize the variation of drag with Mach number. From this, explain the need for supercritical airfoil and Whit comb area rule.
[BL: Understand| CO: 5|Marks: 7]
(b) Using linearized theory, calculate the lift and drag coefficients for a flat plate at a 5^{0} angle of attack in a Mach 3 flow.
[BL: Apply| CO: 5|Marks: 7]
6. (a) With necessary diagrams and equations paraphrase the philosophy of Method of Characteristics (MOC).
[BL: Understand| CO: 5|Marks: 7]
(b) Design a Convergent-Divergent nozzle using method of characteristics and explain the philosophy involved in method of characteristics
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) List down the various facilities used in hypersonic flows and explain any one with the help of a neat sketch.
[BL: Understand| CO: 6|Marks: 7]
(b) Explain in detail about the working of subsonic and supersonic wind tunnels with suitable sketch.
[BL: Understand| CO: 6|Marks: 7]
8. (a) Illustrate the working of a shock tunnel with suitable diagrams and explain the function of each component.
[BL: Understand| CO: 6|Marks: 7]
(b) Elucidate the various visualization techniques used in compressible flow. Make a comparison of schlieren and shadowgraphy techniques.
[BL: Understand| CO: 6|Marks: 7]

