INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
(Dundigal-500043, Hyderabad)

B.Tech V SEMESTER END EXAMINATIONS (REGULAR) - DECEMBER 2022
 Regulation:UG20
 IMAGE AND SPEECH PROCESSING

Time: 3 Hours (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)
Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Describe the fundamental steps in digital image processing. Write the image acquisition using linear strip and circular strips.
[BL: Understand| CO: 1|Marks: 7]
(b) The pixel values of the following 5×5 matrix representation of an image are represented by 8 -bit integers. Determine f with a gray-level resolution of 2 k for i) $\mathrm{k}=5 \mathrm{ii}$) $\mathrm{k}=3$.

$$
\mathrm{F}=\left[\begin{array}{ccccc}
123 & 162 & 200 & 147 & 93 \\
137 & 157 & 165 & 232 & 189 \\
151 & 155 & 152 & 141 & 130 \\
205 & 101 & 100 & 193 & 115 \\
250 & 50 & 75 & 88 & 100
\end{array}\right]
$$

[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) How an image is compressed using JPEG image compression standard? Differentiate lossless and lossy compression.
[BL: Understand| CO: 2|Marks: 7]
(b) Using the following probability mass function perform the Huffman coding and calculate the coding efficiency
$\left[\begin{array}{lllllll}\frac{1}{2} & \frac{1}{8} & \frac{1}{8} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16} & \frac{1}{16}\end{array}\right]$
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Summarize the human speech production system with the help of a schematic representation of vocal tract.
[BL: Understand| CO: 3|Marks: 7]
(b) The waveform plot in Figure 1 shows a 500 msec section ($100 \mathrm{msec} / \mathrm{line}$) of a speech waveform. Indicate the regions of voiced, un-voiced speech and silence (or background signal). For the voiced regions estimate the pitch period on a period-by-period basis and plot the pitch period versus time for this section of speech. (let the period be indicated as zero during unvoiced and silence intervals)

Figure 1
4. (a) Outline the excitation network for voiced fricatives. Briefly describe the inherent properties speech signal.
[BL: Understand| CO: 4|Marks: 7]
(b) The reflection coefficients for the junction of two lossless acoustic tubes of areas A_{k} and A_{k+1} can be written as either
$r_{k}=\frac{\frac{A_{k+1}}{A_{k}}-1}{\frac{A_{k+1}}{A_{k}}+1}$ or $r_{k}=\frac{1-\frac{A_{k+1}}{A_{k}}}{\frac{1+A_{k+1}}{A_{k}}}$
i) Show that since both A_{k} and A_{k+1} are positive, $-1<=r_{k}<=1$.
ii) Show that if $0<A_{k}<\infty$ and $0<A_{k+1}<\infty$, then $-1<r_{k}<1$
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Infer the working of center clipping auto correlator with the help of block diagram. Enlist the advantages of using three level clipper.
[BL: Understand| CO: 5|Marks: 7]
(b) Explain the term short time magnitude with related equations. How do you distinguish voiced and unvoiced segments based on this parameter?
[BL: Apply| CO: 5|Marks: 7]
6. (a) Illustrate the term autocorelation function with relevant diagram. Draw the block diagram representation of short-time zero-crossings.
[BL: Understand| CO: 5|Marks: 7]
(b) Calculate the autocorrelation function, $R_{n}(k)$ using rectangular window for periodic impulse train.
i) How would the result change if the window is Hamming window
ii) Find and sketch the modified short time autocorrelation function.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Comment on the model of frequency-domain processing of speech via STFA and STFS methods. [BL: Understand| CO: 6|Marks: 7]
(b) A filter bank with N filters has the following specifications:

- the center frequencies of the bands are ω_{k}
- the bands are symmetric around $\omega=\pi$, i.e., $\omega_{k}=2 \pi-\omega_{N-k}, P_{k}=P_{N-K}^{*} \omega_{k}[\mathrm{n}]=\omega_{N-k}[\mathrm{n}]$
- a channel exists for $\omega_{k}=0$. For both N even and N odd:
i) Sketch the locations of the N filter bands;
ii) Determine an expression for the composite impulse response of the filter bank in terms of $\omega_{k}[\mathrm{n}], \omega_{k}, P_{k}$, and N .
[BL: Apply| CO: 6|Marks: 7]

8. (a) Show the lossless tube model terminated in infinitely long tube and its corresponding signal flow graph for infinite glottal impedance.
[BL: Understand| CO: 6|Marks: 7]
(b) Determine the second-order linear prediction inverse filter, $\mathrm{A}(\mathrm{z})$, for which the two LSF are 666.67 Hz and 2000 Hz , when $\mathrm{Fs}=8000$ samples/sec.
[BL: Apply| CO: 6|Marks: 7]
