\square
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
(Dundigal-500043, Hyderabad)
B.Tech V SEMESTER END EXAMINATIONS (REGULAR) - DECEMBER 2022
Regulation:UG20
ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Time: 3 Hours (Electronics and communication engineering) Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Interpret the functions of the DC-voltmeter and multi range voltmeter and explain their operation.
[BL: Understand| CO: 1|Marks: 7]
(b) A voltmeter is used for reading on a standard value of 50 volts. The following readings are obtained: $47,52,51,48$. Compute absolute accuracy, relative accuracy and percentage accuracy.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) List out the signal parameters and represent them over a signal graph. With a neat circuit diagram, explain the time base generator using UJT.
[BL: Understand| CO: 2|Marks: 7]
(b) The x -deflection plates of a CRT are 20 mm long and 5 mm apart. The centre of the plate from the screen is 25 cm away. The accelerating voltage is 3000 V . Solve the deflection sensitivity and the deflection factor.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) With the help of a block diagram, explain the operation of a wide band sweep generator.
[BL: Understand| CO: 3|Marks: 7]
(b) Estimate the value of a minimum detectable signal of a spectrum analyzer with a noise figure of 40 dB using a $1 \mathrm{kHz} 3-\mathrm{dB}$ filter.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Summarize the usage of spectrum analyzers. Describe the working of function generator with the block diagram.
[BL: Understand| CO: 4|Marks: 7]
(b) An amplifier with feedback has a voltage gain of 40 . To produce specified output, the input voltage required without specified feedback is 0.1 , with feedback I / P as 2.4 V to produce the same O / P. Calculate the value of the feedback ratio.
[BL: Apply| CO: $4 \mid$ Marks: 7]

MODULE - IV

5. (a) Determine the equation to find the unknown resistance in a Wheatstone bridge circuit with a neat diagram.
[BL: Understand| CO: $5 \mid$ Marks: 7]
(b) For the bridge circuit shown in Figure $1, R_{1}=1000 \Omega, R_{2}=4000 \Omega, R_{3}=100 \Omega, R_{4}=400 \Omega$. The galvanometer has an internal resistance of 100Ω and a current sensitivity of $100 \mathrm{~mm} / \mu \mathrm{A}$. The battery voltage is 3 V . Calculate the galvanometer deflection for an imbalance of 1Ω in the resistance R_{4}.
[BL: Apply| CO: 5|Marks: 7]

Figure 1
6. (a) Demonstrate the measurement procedure of inductance using HAY bridge with neat sketch.
[BL: Understand| CO: $5 \mid$ Marks: 7]
(b) An AC bridge shown in Figure 2 has the following constants. Arm $\mathrm{AB}: \mathrm{R}=800 \Omega$ in parallel with $\mathrm{C}=0.4 \mu \mathrm{~F} ; \mathrm{BC}: \mathrm{R}=500 \Omega$ in series with $\mathrm{C}=1.0 \mu \mathrm{~F} ; \mathrm{CD}: \mathrm{R}=1.2 \mathrm{k} \Omega ; \mathrm{DA}$: pure resistance of unknown values. Find the frequency for which the bridge is in balance and the value of R in arm DA to produce a balance.
[BL: Apply| CO: 5|Marks: 7]

Figure 2

MODULE - V

7. (a) Classify transducers based on working principle. Discuss the principle and operation of piezo electric transducers.
[BL: Understand| CO: $6 \mid$ Marks: 7$]$
(b) A linear resistance potentiometer is 50 mm long and is uniformly wound with a wire of total resistance 5000Ω. Under normal conditions the slider is at the centre of the potentiometer. Determine the linear displacement when the resistance of the potentiometer is 1850Ω.
[BL: Apply| CO: $6 \mid$ Marks: 7$]$
8. (a) Discuss the principle of operation and working of LVDT with neat sketch. State advantages and disadvantages of LVDT.
[BL: Understand| CO: 6|Marks: 7]
(b) A resistive strain gauge, $\mathrm{G}=2.2$, is cemented on a rectangular steel bar with the elastic modulus $\mathrm{E}=205 \times 10^{6} \mathrm{kN} / m^{2}$, width 3.5 cm and thickness 0.55 cm . An axial force of 12 kN is applied. Determine the change of the resistance of the strain gauge, $\triangle R$, if the normal resistance of the gauge is $\mathrm{R}=100 \Omega$
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

