INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
(Dundigal-500043, Hyderabad)

B.Tech V SEMESTER END EXAMINATIONS (REGULAR) - DECEMBER 2022
 Regulation:UG20
 THEORY OF COMPUTATION

Time: 3 Hours
(Common to CS \| DS)
Max Marks: 70

Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks

All parts of the question must be answered in one place only

MODULE - I

1. (a) What is DFA? Draw a DFA to accept strings of 0's and 1's that either begins or ends or both with the strings 01 .
[BL: Understand| CO: 1|Marks: 7]
(b) Consider the following ε-NFA given in Table 1

Table 1

δ	ε	a	b	c
$\rightarrow \mathrm{p}$	Φ	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	Φ
$*_{\mathrm{r}}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	Φ	$\{\mathrm{p}\}$

i) Show ε-closure of each state.
ii) Convert the automata to DFA.
MODULE - II
2. (a) Show that the family of regular languages are closed under, union, concatenation and star closure. [BL: Understand| CO: 2|Marks: 7]
(b) Give the formal definition of a regular expression. Develop a regular expression for the following language:
i) $\mathrm{L}=\left\{\mathrm{w}: \operatorname{na}(\mathrm{w}) \bmod 3=0\right.$ where $\left.\mathrm{w} \epsilon\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
ii) $\mathrm{L}=\{$ anbm : $\mathrm{n} \geq 4, \mathrm{~m} \geq 3\}$
iii) Strings of a's and b's containing not more than three a's.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) List different types of normal forms. Illustrate the construction of Greibach normal form with an example.
[BL: Understand| CO: 3|Marks: 7]
(b) Write about LMD and RMD. Consider the grammar with productions
$S \rightarrow A B \mid \varepsilon$
$\mathrm{A} \rightarrow \mathrm{aB}$
$\mathrm{B} \rightarrow \mathrm{Sb}$
For the string aabbbb show i) Leftmost derivation ii) Rightmost derivation iii) Derivation tree.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Summarize about ambiguous grammar with example. Describe the procedure to eliminate ϵ productions in grammar.
[BL: Understand| CO: 4|Marks: 7]
(b) Apply the standard procedures to eliminate ε-productions, unit productions and useless symbols for the following grammar
$\mathrm{S} \rightarrow \mathrm{a}|\mathrm{aA}| \mathrm{B}|\mathrm{C}| \mathrm{D} \mid \mathrm{E}$
$\mathrm{A} \rightarrow \mathrm{aB} \mid \varepsilon$
$\mathrm{B} \rightarrow \mathrm{Aa}$
$\mathrm{C} \rightarrow \mathrm{eCD}$
$\mathrm{D} \rightarrow \mathrm{dE}$
$\mathrm{E} \rightarrow \mathrm{eE} \mid \mathrm{D}$
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Outline the concept of PDA. Differentiate between deterministic and non deterministic PDA.
[BL: Understand| CO: 5|Marks: 7]
(b) Design the PDA by constructing state diagram and transition functions to accept the language $\mathrm{L}=\left\{w c w^{R}: \mathrm{w} \epsilon\left\{\{\mathrm{a}, \mathrm{b}\}^{*}\right\}\right.$ by the empty stack.
[BL: Apply| CO: 5|Marks: 7]
6. (a) Discuss about deterministic context free languages and deterministic push down automata.
[BL: Understand| CO: 5 |Marks: 7]
(b) Develop a CFG for the following PDA
$\delta\left(q_{0}, \mathrm{a}, \mathrm{z}\right)=\left(q_{0}, \mathrm{AZ}\right), \delta\left(q_{0}, \mathrm{a}, \mathrm{A}\right)=\left(q_{0}, \mathrm{~A}\right), \delta\left(q_{0}, \mathrm{~b}, \mathrm{~A}\right)=\left(q_{1}, \varepsilon\right), \delta\left(q_{0}, \varepsilon, \mathrm{z}\right)=\left(q_{2}, \varepsilon\right)$
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Describe a turing machine. With a neat diagram, explain its working.
[BL: Understand| CO: 6|Marks: 7]
(b) Construct a transition diagram for turing machine to accept the language $\mathrm{L}=\left\{\mathrm{w}=\neq w^{R} \mid \mathrm{w} \epsilon(\mathrm{a}+\mathrm{b}) *\right\}$
[BL: Apply| CO: 6|Marks: 7]
8. (a) Summarize the following terms in detail:
i) Church's Hypothesis
ii) Counter machine
[BL: Understand| CO: 6|Marks: 7]
(b) Construct transition diagram for turing machine that accepts the language $\mathrm{L}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. Give the transition diagram for the turing machine obtained and also show the moves made by the turing machine for the string 000111.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

