INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)
 Dundigal-500043, Hyderabad

B.Tech III SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2022
 Regulation:UG-20
 FLUID DYNAMICS

Time: 3 Hours
(AE)
Max Marks: 70

Answer ALL questions in Module I and II
 Answer ONE out of two questions in Modules III, IV and V

NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) State and explain the Newton's law of viscosity. Deduce the expression for the dynamic viscosity.
(b) A cylindrical body 2 m diameter and 3.5 m height weight is 80 kN . Find the tension necessary in a vertical chain attached to the centre of the base that will keep the cylinder float vertically. [7M]
MODULE - II
2. (a) Find the expression of drag over a cylinder using dimensional analysis method.
(b) In 1:20 model of stilling basin, the height of hydraulic jump in the model is observed to be 20 cm . What would be the corresponding height of jump in the prototype, if energy dissipation in the model were 0.1 KW . What would be the corresponding value in the prototype?
[7M]

MODULE - III

3. (a) What is law of conservation of mass? Derive the expression for continuity in 3D flow and steady flow.
[7M]
(b) Given that $u=x y, v=2 y z$, examine whether these velocity components represent two or three dimensional incompressible flow. If three dimensional, determine the third component.
[7M]
4. (a) What is a pitot tube? How is it used to measure velocity of flow at any point in a pipe or channel?
[7M]
(b) Water at the rate of 30 litres $/ \mathrm{sec}$. is flowing through a 0.2 m . I.D. pipe. A venturimeter of throat diameter 0.1 m is fitted in the pipeline. A differential manometer in the pipeline has an indicator liquid M and the manometer reading is 1.16 m . What is the relative density of the manometer liquid M? Venturi co-efficient $=0.96$; Density of water $=998 \mathrm{~kg} / \mathrm{m}^{3}$.
[7M]
MODULE - IV
5. (a) How will you determine whether a boundary layer flow is attached flow, detached flow or on the verge of separation?
[7M]
(b) The boundary layer thickness at a distance of 1 m from the leading edge of a flat plate kept over zero angle of incidence to the flow direction is 1 mm . The velocity outside the boundary layer is $25 \mathrm{~m} / \mathrm{s}$. determine the boundary layer thickness at a distance of 4 m . Assume that the boundary layer is entirely laminar.
[7M].
6. (a) Explain the phenomenon of boundary layer separation using an example of flow over a cylinder.
(b) A submarine can be treated as an ellipsoid with a diameter of 5 m and a length of 25 m . Determine the power required for this submarine to cruise horizontally and steadily at $40 \mathrm{~km} / \mathrm{h}$ in seawater whose density is $1025 \mathrm{~kg} / \mathrm{m}^{3}$. Also determine the power required to tow this submarine in air whose density is $1.30 \mathrm{~kg} / \mathrm{m}^{3}$. Assume the flow is turbulent in both cases.
[7M]

MODULE - V

7. (a) Determine an expression for maximum hydraulic and overall efficiency of a Pelton wheel. [7M]
(b) The propeller reaction turbine of runner diameter 4.5 m is running at $48 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The guide blade angle at inlet is 145° and the runner blade angle at outlet is 25° to the direction of vane. The axial flow area of water through the runner is $30 \mathrm{~m}^{2}$. If the runner blade angle at inlet is radial, determine
i) Hydraulic efficiency of the turbine
ii) Discharge through the turbine
iii) Power developed by the runner.
8. (a) Make a detailed comparison between reciprocating pumps and centrifugal pumps.
(b) A centrifugal pump delivers water against a net head of 14.5 m and design speed of 1000 rpm . The vanes are curved back to an angle of 30° with periphery. The impeller diameter is 300 mm and outlet width 50 mm . Determine the discharge of the pump if the manometric efficiency is 95%.
