INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

(Dundigal-500043, Hyderabad)
B.Tech III SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2022

Regulation:UG-20
MATHEMATICAL FOUNDATION FOR CYBER SECURITY
Time: 3 Hours
(CS)
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Use the Euclidean algorithm to find the $\operatorname{GCD}(1819,3587)$
(b) Find the remainder when the sum $1!+2!+3!+\ldots+1000$! is divided by 4 and by 5 .

MODULE - II

2. (a) Show that if $\left\{U_{n}\right\}$ is the set of $n^{\text {th }}$ roots of unity, $\left\{U_{n}, x\right\}$ is a cyclic group. Is it abelian?
(b) If R and C are additive groups of real and complex numbers respectively and if the mapping $f: C \rightarrow R$ is defined by $f(x+i y)=x$, show that f is a homomorphism. Find also the kernel of f .
[7M]

MODULE - III

3. (a) Use Bayes'theorem to find $p(W=j \mid M=k)$ where i and j and k are distinct values.
[7M]
(b) There are 250 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 4 dogs are chosen at random, what is the probability they have an average weight of greater than 8 pounds and less than 25 pounds using central limit theorem.
4. (a) A continuous random variable X has a p.d.f.
$f(x)=3 x^{2}, 0 \leq x \leq 1$ Find a and b such that
i) $P(X \leq a)=P(X>a)$
ii) $P(X>b)=0.05$.
(b) The record of weights of the male population follows the normal distribution. Its mean and standard deviations are 70 kg and 15 kg respectively. If a researcher considers the records of 50 males, then what would be the mean and standard deviation of the chosen sample? Use central limit theorem.
[7M]
5. (a) A binary symmetric channel has probability $\mathrm{p}=0.05$ of incorrect transmission. If the code word $\mathrm{c}=011011101$ is transmitted. What is the probability that i) We receive $\mathrm{r}=011111101$?
ii) We receive $\mathrm{r}=111011100 \mathrm{iii}$) A single error occurs iv) A double error occurs v) A triple error occurs
[7M]
(b) Find the code words generated by the parity check matrix
$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ when the encoding function is $e: B^{3} \rightarrow B^{6}$.
6. (a) Write about Hadamard matrix. Construct a 4×4 Hadamard matrix.
(b) Let C1 be linear binary [6,3,3] code with generator matrix $\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0\end{array}\right]$ and parity check matrix $\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$ Find the syndromes and coset leaders.

MODULE - V
7. (a) Explain quadratic residues and find the quadratic residues and non-quadratic of Z_{23}^{*}
[7M]
(b) Let p be an odd prime and let $a \epsilon Z_{p}^{*}$ then show that $\left(\frac{a}{p}\right)=a^{\frac{p-1}{2}}(\bmod \mathrm{p})$
8. (a) Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a PRG. For any polynomial $1, G^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}^{l(n)}$, $G^{\prime}(s)=b_{1}, \ldots b_{l(n)}$ where $X_{0} \leftarrow s \Rightarrow X_{i+1} \| b_{i+1} \leftarrow G\left(X_{i}\right)$ then G is a PRG. Let n be an integer and let a and b be integers then
(b) Let n be an integer and let a and b be integers then show that $\frac{a b}{n}=\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)$

