B.Tech III SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2022

Regulation:UG-20
FLUID MECHANICS
Time: 3 Hours
(CE)
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Explain the following terms:
i) Dynamic viscosity and kinematic viscosity
ii) Surface tension and capillarity.
[7M]
(b) A plate having an area of $1 \mathrm{~m}^{2}$ is dragged down an inclined plane at 45° to horizontal with a velocity of $0.5 \mathrm{~m} / \mathrm{s}$ due to its own weight. There is a cushion of liquid 1 mm thick between the inclined plane and the plate. If viscosity of oil is 0.1 PaS , find the weight of the plate.
[7M]

MODULE - II

2. (a) Explain the importance of manometer with the neat sketch and discuss in detail the principle of working the manometers.
(b) A hydraulic press has a ram of 30 cm diameter and a plunger of 4.5 cm diameter. Find the weight lifted by the hydraulic press when the force applied at the plunger is 500 N .

MODULE - III

3. (a) Derive the continuity equation in Cartesian coordinates for a steady, incompressible, three dimensional flow.
(b) In a two dimensional incompressible flow the fluid velocity components are given by
$\mathrm{u}=\mathrm{x}-4 \mathrm{y}$ and $\mathrm{v}=-\mathrm{y}-4 \mathrm{x}$
where u and v are x and y components of velocity of flow. Show that the flow satisfies the continuity equation and obtain the expression for stream function.
4. (a) Explain the following terms:
i) Steady-uniform flow and unsteady- non uniform flow
ii) Laminar flow and turbulent flow based on Reynolds number.
(b) A stream function in a two dimensional flow is $\psi=2 \mathrm{xy}$. Show that the flow is irrotational and determine the corresponding velocity potential.
[7M]
MODULE - IV
5. (a) State and derive Bernoulli's energy equation for one dimensional streamline flow.
(b) A horizontal venturimeter with inlet diameter 200 mm and throat diameter 100 mm is used to measure the flow of oil of specific gravity 0.8 . The discharge of oil through venturimeter is 60 lps . Find the reading of the oil-mercury differential manometer. Take $C_{d}=0.98$.
6. (a) What are the forces acting on the fluid in motion? Derive Euler's equation of motion.
[7M]
(b) A Pitot-tube is inserted in a pipe of 300 mm diameter. The static pressure is 100 mm of mercury (vacuum). The stagnation pressure at the centre of pipe recorded by the Pitot-tube is 9.81 kPa . Calculate the rate of flow of water through the pipe, if the mean velocity of flow is 0.85 times the central velocity. Take $C_{v}=0.98$.
[7M]

MODULE - V

7. (a) What do you mean by water hammer in pipes? Explain the types of major and minor losses occurring in pipe flow.
[7M]
(b) Two pipes are connected in parallel between two reservoirs that have difference in levels of 3.5 m . The length, the diameter, and friction factor (4 f) are $2400 \mathrm{~m}, 1.2 \mathrm{~m}$, and 0.026 for the first pipe and $2400 \mathrm{~m}, 1 \mathrm{~m}$, and 0.019 for the second pipe.
8. (a) What is meant by equivalent size of pipe? Derive an equation for equivalent size of pipe.
(b) Find the diameter of a Galvanized iron pipe required to carry a flow of 40 lps of water, if the loss of head is not to exceed 5 m per 1 km length of pipe, assume $\mathrm{f}=0.02$ in $h_{f}=f l v^{2} / 2 \mathrm{gd}$.

$$
-\circ \circ \bigcirc \circ \circ-
$$

