Hall Ticket No								Que	stion Paper Code:AECC01
	STI	τυτι	E OF	AE	RON	IAU	ΤΙΟ	CAL ENGINE	ERING
(Autonomous) (Dundigal-500043, Hyderabad)									
B.Tech III SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2022 Regulation:UG-20 ELECTRONIC DEVICES AND CIRCUITS									
Time: 3 Hours		(ECE)						Max Marks: 70	
		er ON	E out o answ	of tw er TW	vo que VO que	estion	ns in 5 fron	lodule I and II Modules III, IV n among one of the ual Marks	and V Modules III / IV / V
All parts of the question must be answered in one place only									

MODULE - I

- 1. (a) Draw the full-wave rectifier with center tapped transformer with relevant waveforms and derive expression for its efficiency. [7M]
 - (b) A full wave rectifier has a center tapped transformer 100-0-100 V. Each one of the diode is rated at Imax of 400mA. Neglecting the voltage drop across the diodes. Solve
 - i) Efficiency
 - ii) DC output voltage
 - iii) DC load current
 - iv) PIV of each diode

$\mathbf{MODULE}-\mathbf{II}$

- 2. (a) Describe the working of NPN transistor in common base configuration and draw its input and output characteristics. [7M]
 - (b) The reverse leakage current of the transistor when connected in CB configuration is 0.2 μ A and it is 18 μ A when the same transistor is connected in CE configuration. Calculate α_{dc} and β_{dc} of the transistor. (Assume $I_B = 30mA$). [7M]

$\mathbf{MODULE}-\mathbf{III}$

3. (a) Explain any two bias compensation techniques. Contrast bias stabilization and compensation techniques. [7M]

(b) The h-parameters of a transistor used in a CE circuit are $h_{ie} = 1.0 \text{ K}\Omega$, $h_{re} = 2.0 \times 10^{-4}$, $h_{fe} = 50 \text{ and } h_{oe} = 25 \ \mu\text{mhos.}$ The load resistor for the transistor is 1K Ω and source resistance is 800 Ω . Determine the value of $A_V, A_I, R_i, and R_O$. [7M]

- 4. (a) Draw the Self bias circuit and derive the stability factor for it along with explanation. [7M]
 - (b) The h-parameters of a transistor used in a CB circuit are $h_{ib} = 22\Omega$, $h_{rb} = 3.0 \ge 10^{-4}$, $h_{fb} = -0.98$ and $h_{ob} = 0.5 \ \mu$ mhos. The load resistor for the transistor is 1K Ω and source resistance is 1200 Ω . Determine the value of A_V, A_I, R_i , and R_O, A_{VS}, A_{IS} . [7M]

[7M]

$\mathbf{MODULE}-\mathbf{IV}$

5. (a) With a neat constructional diagram explain the operation of n-channel depletion-type MOSFET.

[7M]

[7M]

- (b) A JFET amplifier with a voltage-divider biasing circuit has the following parameters: $V_P = -2V$, $I_{DSS} = 4\text{mA}$, $R_D = 910\Omega$, $R_S = 3\text{K}\Omega$, $R_1 = 12\text{M}\Omega$, $R_2 = 8.57\text{M}\Omega$ and $V_{DD} = 24$ V. Solve the value of drain current I_D at the operating point. Verify whether the FET will operate in the pinch-off region. [7M].
- 6. (a) Explain the parameters trans-conductance g_m , drain resistance r_d and amplification factor μ of a JFET. Establish a relation between them. [7M]
 - (b) The device parameters for an n-Channel JFET $I_{DSS} = 10mA, V_p = -4V$ Calculate the drain current for i) $V_{GS} = 0$ ii) $V_{GS} = -1.0V$ iii) $V_{GS} = -4V$. [7M]

$\mathbf{MODULE}-\mathbf{V}$

- 7. (a) Explain the V-I characteristics of Zener diode and analyse Avalanche and Zener breakdown mechanisms. [7M]
 - (b) A 5V stabilized power supply is required to be produced from a 12V DC power supply input source. The maximum power rating P_Z of the zener diode is 2W. Solve :
 - i) The maximum current flowing through the zener diode.
 - ii) The minimum value of the series resistor, R_S .
 - iii) The load current I_L if a load resistor of $1k\Omega$ is connected across the zener diode.
 - iv) The zener current I_Z at full load.
- 8. (a) Draw the circuit diagram of SCR and explain its operation along with its characteristics. [7M]
 - (b) Calculate voltage gain of the CS JFET amplifier given in the Figure 1. $g_m = 4\text{mA/V}$ and $R_S = 400\Omega$. (Assume necessary data) [7M]

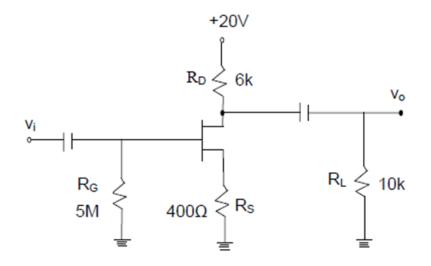


Figure 1

 $-\circ\circ\bigcirc\circ\circ-$