INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal-500043, Hyderabad
B.Tech III SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2022

Regulation:UG-20
ANALOG ELECTRONICS
Time: 3 Hours
(EEE)
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Derive the expressions for current gain, voltage gain and input impedance of a CE amplifier.
(b) A common emitter circuit has the following components $R_{1}=27 \mathrm{k} \Omega, R_{2}=27 \mathrm{k} \Omega, R_{e}=5.6 \mathrm{k} \Omega, R_{L}=47 \mathrm{k} \Omega$, Rs $=600 \Omega$. The transistor parameters are $h_{i e}=1 \mathrm{k} \Omega, h_{f e}=85$ and $h_{o e}=2 \mu \mathrm{~A} / \mathrm{V}$. Determine A_{i}, R_{i}, A_{v}, R_{o}.
[7M]

MODULE - II

2. (a) Explain the principle of CS amplifier with the help of circuit diagram. Derive the expressions for A_{V}, input impedance and output impedance.
[7M]
(b) A common source amplifier circuit with bypassed R_{s} has the following circuit parameters:
$R_{d}=15 \mathrm{~K}, R_{S}=0.5 \mathrm{~K}, R_{g}=1 \mathrm{M}, r_{d}=5 \mathrm{~K}, g_{m}=5 \mathrm{mS}$ and $V_{D D}=20 \mathrm{~V}$. Determine A_{V} and R_{O}.
[7M]

MODULE - III

3. (a) Draw the push-pull class-B power amplifier and explain its operation. Show that the maximum conversion efficiency is 78.5%.
(b) Calculate the DC bias voltages, collector current voltage gain of each stage and the overall AC voltage gain for the BJT cascade amplifier circuit shown in Figure 1.

Figure 1
4. (a) Explain the classification of amplifiers with relevant sketches.
(b) Calculate the efficiency of a transformer-coupled class A amplifier for a supply of 12 V and outputs of:
i) $V(p)=12 \mathrm{~V}$.
ii) $V(p)=6 V$.
iii) $V(p)=2 V$.
[7M]

MODULE - IV

5. (a) Draw the circuit and explain the principle of operation of RC phase-shift oscillator. Derive the expression for the frequency of oscillations.
[7M]
(b) Identify the feedback topology and calculate the voltage gain with and without feedback for the circuit of Figure 2 with values of $g_{m}=5 \mathrm{mS}, R_{D}=5.1 \mathrm{k} \Omega, R_{S}=1 \mathrm{k} \Omega$, and $R_{F}=20 \mathrm{k} \Omega$. $\quad[7 \mathrm{M}]$

Figure 2
6. (a) Explain about Hartley oscillator. Illustrate the expression for the frequency of Hartley oscillators.
(b) Determine the voltage gain, input, and output impedance with feedback for voltage-series feedback having $\mathrm{A}=-100, R_{i}=10 \mathrm{k} \Omega$ and $R_{o}=20 \mathrm{k} \Omega$ for feedback of
i) $\beta=-0.1$
ii) $\beta=-0.5$.

MODULE - V

7. (a) Explain briefly about the following
i) CMRR
ii) Input offset voltage
iii) Band width
iv) Input bias current.
(b) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz to about 1 KHz . If a sine wave of 1 V peak at 1000 Hz is applied to this differentiator draw the output waveforms.
[7M]
8. (a) Explain the operation of a square wave generator using op-amp with a neat circuit diagram and relevant waveforms.
(b) Find R_{1} and R_{f} in the lossy integrator so that the peak gain is 20 dB and the gain is 3 dB down from its peak when $\omega=10,000 \mathrm{rad} / \mathrm{sec}$. use a capacitance of 0.01 micro farads.
[7M]

$$
-\circ \circ \bigcirc \circ \circ-
$$

