B.Tech III SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2022

Regulation:UG-20
NETWORK ANALYSIS
Time: 3 Hours
(EEE)
Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) In a series RL circuit, the inductance being 20 mH , the impedance is 17.85Ω. The angle of lag of the input current from the applied voltage being 63.5^{0} find the values of angular frequency and resistance of the circuit.
(b) For the circuit shown in Figure 1, determine resonant frequency and the impedance at resonant frequency.

Figure 1
MODULE - II
2. (a) Derive an expression for the current response in R - L series circuit with DC source.
(b) In the circuit shown in Figure 2, obtain the equations for $I_{1}(t)$ and $I_{2}(t)$ when the switch is closed at $t=0$.

Figure 2

MODULE - III

3. (a) What is locus diagram and show that the locus diagram of series RL circuit with variable R and fixed value of L is a semi-circle?
(b) For a series RL circuit with variable R, plot the locus of the current, mark the range of I for maximum and minimum values of R, and maximum power consumed in the circuit. Assume $X_{L}=25 \Omega$ and $\mathrm{R}=50 \Omega$. The voltage is $200 \mathrm{~V}, 50 \mathrm{~Hz}$.
4. (a) State and explain the significance of poles and zeros in network function.
(b) A network function is given by $P(s)=\frac{2 s}{(s+2)\left(s^{2}+2 s+2\right)}$. Obtain the pole-zero plot and determine the stability of the network.

MODULE - IV

5. (a) Obtain the relation between line and phase current in a three-phase balanced star connected system.
[7M]
(b) The three RMS phase voltages of a balanced three phase supply are $V_{R N}=100 \angle 0^{0}$, $V_{Y N}=100 \angle-120^{\circ}$ and $V_{B N}=100 \angle-240^{\circ}$. What are the magnitudes of line voltages? $\quad[7 \mathrm{M}]$.
6. (a) With the help of connection diagram and phasor diagram, show that two wattmeters are sufficient to measure active power in a three phase three wire system with balanced star connected load.
[7M]
(b) Two wattmeters are used to measure power in a 3-phase three wire load. Determine the total power, power factor and reactive power, if two wattmeter read 5000 W each, both positive.
[7M]

MODULE - V

7. (a) What is a filter and classify filters based on frequency characteristics and relation between series and shunt arm impedances.
[7M]
(b) Design a constant K-low pass filter to match with a line having characteristic impedance of 500Ω and to pass frequency upto 5 kHz .
8. (a) With T and π configuration, explain constant K low pass filter and constant K high pass filter.
(b) Design a proto type section of band pass filter having cut-off frequencies of 12 KHz and 16 KHz and a design impedance of 600 ohm .
