# INSTITUTE OF AERONAUTICAL ENGINEERING 

(Autonomous)
(Dundigal-500043, Hyderabad)
B.Tech III SEMESTER END EXAMINATIONS (REGULAR) - FEBRUARY 2022
Regulation:UG-20
DISCRETE MATHEMATICAL STRUCTURES

Time: 3 Hours
(CSE|IT|CSIT)
Max Marks: 70

## Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

## MODULE - I

1. (a) Find the principal disjunctive normal forms of the statement:
$P \wedge\urcorner(q \wedge r) \vee(p \rightarrow q)$
(b) Show that the premises "one student in this class knows how to write programs in JAVA" and
"Everyone who knows how to write in this class can get a high-paying job".
[7M]

## MODULE - II

2. (a) If R is the relation on the set of integers such that $(a, b) \epsilon R$ if and only if $3 a+4 b=7 n$ for some integer $n$, prove that $R$ is an equivalence relation.
(b) Draw the Hasse diagram representing the partial ordering $\{(A, B) \mid A \subseteq B\}$ on the power set $\mathrm{P}(\mathrm{S})$, where $S=\{a, b, c\}$. Find the maximal, minimal, greatest and least elements of the poset. Find also the upper bounds and LUB of the subset $(\{a\},\{b\},\{c\})$ and the lower bounds and GLB of the subset ( $\{a, b\},\{a, c\},\{b, c\})$.
[7M]

## MODULE - III

3. (a) If * is the binary operation on the set R of real numbers defined by $a * b=a+b+2 a b$.
i) Find if $\{R, *\}$ is a semigroup. Is it commutative?
ii) Find the identity element, if exists
iii) Which elements have inverses and what are they?
(b) Prove that the set $Z_{4}=\{0,1,2,3\}$ is a commutative ring with respect to the binary operation $+_{4}, *_{4}$
4. (a) If G is the set of all ordered pairs $(\mathrm{a}, \mathrm{b})$ where $\mathrm{a}(\neq 0)$ and b are real and the binary operation * on G is defined by $(a, b) *(c, d)=(a c, b c+d)$ show that $\left(\mathrm{G},{ }^{*}\right)$ is a non-abelian group. Show also that the subset H of all those elements of G which are of the form $(1, \mathrm{~b})$ is a subgroup of G .
(b) Find the number of integers between 1 and 250 both inclusive that are not divisible by any one of the integers $2,3,5$ and 7 .
5. (a) Find a formula for the general term of the Fibonacci sequence $0,1,1,2,3,5,8,13, \ldots$.
(b) Solve the recurrence relation $a_{n}=4 a_{n-1}-4 a_{n-2}+(n+1) 2^{n}$.
6. (a) Solve the recurrence relation $a_{n}=2\left(a_{n-1}-a_{n-2}\right) ; n \geq 2$ and $a_{0}=1$ and $a_{1}=4$.
(b) Use the method of generating function to solve the recurrence relation
$a_{n}=4 a_{n-1}+3 n \cdot 2^{n} ; n \geq 1$ given that $a_{0}=4$.

## MODULE - V

7. (a) Establish the isomorphism of the two graphs given in Figure 1 by considering their adjacency matrices.
[7M]


Figure 1
(b) Use Prim's algorithm to find a minimum spanning tree for the weighted graph given in Figure 2.
[7M]


Figure 2
8. (a) Give an example of a graph which contains
i) An Eulerian circuit that is also a Hamiltonian circuit that are distinct.
ii) An Eulerian circuit and a Hamiltonian circuit that are distinct.
iii) An Eulerian circuit but not a Hamiltonian circuit, a Hamiltonian circuit, but not an Eulerian circuit.
(b) Use Kruskal's algorithm to find a minimum spanning tree for the weighted graph shown in Figure 3.


Figure 3

$$
-\circ \circ \bigcirc \circ \circ-
$$

