(Autonomous)

Dundigal-500043, Hyderabad
B.Tech III SEMESTER END EXAMINATIONS (REGULAR / SUPPLEMENTARY) - FEBRUARY 2023

Regulation:UG20
MECHANICS OF SOLIDS
Time: 3 Hours
(AERONAUTICAL ENGINEERING)
Max Marks: 70

Answer ALL questions in Module I and II
 Answer ONE out of two questions in Modules III, IV and V
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

MODULE - I

1. (a) Illustrate the stress-strain diagram of steel marking all the important points on the diagram.
[BL: Understand| CO: 1|Marks: 7]
(b) A steel rod, 20 mm in diameter and 1.5 m long, is constrained between supports A and B as shown in Figure 1. The material is stress-free at $27^{\circ} \mathrm{C}$. Determine the stress in the material when the temperature increases to $50^{\circ} \mathrm{C}$ i) If the supports are unyielding ii) If the support at B yields by 0.1 mm . E for steel $=200 \mathrm{GPa}$ and α of steel $=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
[BL: Apply| CO: 1|Marks: 7]

Figure 1

MODULE - II

2. (a) Briefly explain the types of beam and supports. Mention the number of unknowns for each supports.
[BL: Understand| CO: 2|Marks: 7]
(b) An overhanging beam as shown in Figure 2 of span L between supports and overhang length 'a' is subjected to a UD load of w / m over the whole length. Draw SF and BM diagrams indicating maximum moment and shear force.
[BL: Apply| CO: 2|Marks: 7]

Figure 2

MODULE - III

3. (a) Prove that shear stress at any point in the rectangular cross-section of a beam which is subjected to a shear force F , given by $\tau=\mathrm{AFy} / \mathrm{bI}$
[BL: Understand| CO: 3|Marks: 7]
(b) A steel plate of dimensions $20 \mathrm{~mm} \times 2 \mathrm{~mm}$ is bent into a circular arc of radius 2 m by applying end couples. If $\mathrm{E}=200 \mathrm{GPa}$, find the end couples applied and the maximum stress in the bar.
[BL: Apply| CO: 3|Marks: 7]
4. (a) State the assumptions made in theory of simple bending. Draw the bending stress and shear stress profiles for a hollow circular beam section.
[BL: Understand| CO: 4|Marks: 7]
(b) A hollow circular section of outside diameter 200 mm and thickness 10 mm carries an SF of 25 kN . Find the maximum shear stress and the shear stress at the inner edge and draw the shear stress distribution diagram.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) What is the value of slope at the point of maximum deflection? Compare the relation between slope, deflection and radius of curvature.
[BL: Understand| CO: 5|Marks: 7]
(b) A cantilever 3 m long carries a UD load of $20 \mathrm{kN} / \mathrm{m}$ for a length of 2 m from the free end as shown in Figure 3. Calculate the values of slope and deflection at the free end, if $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and $\mathrm{Z}=5000 \mathrm{~cm}^{4}$.
[BL: Apply| CO: 5|Marks: 7]

Figure 3
6. (a) Determine the slope and deflection of a simply supported beam subjected to concentrated load at centre.
[BL: Understand| CO: $5 \mid$ Marks: 7]
(b) A simply supported beam of span L carries an eccentric concentrated load P as shown in Figure 4. Derive the general expressions for slope and deflection.
[BL: Apply| CO: 5|Marks: 7]

Figure 4

MODULE - V

7. (a) Explain the condition of maximum shear stress on a oblique section of a member subjected to two direct stresses in two mutually perpendicular directions. [BL: Understand| CO: 6|Marks: 7]
(b) A shaft is subjected to a torque of $16,000 \mathrm{Nm}$. If the maximum permissible stress in the material of the shaft is $65 \mathrm{~N} / \mathrm{mm}^{2}$. Find i) The diameter of a solid shaft ii) The dimensions of a hollow circular shaft if the thickness is 10% of the internal diameter.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Develop the expression for normal and tangential stress on a oblique plane when a member is subjected to a simple shear stress v.
[BL: Understand| CO: 6|Marks: 7]
(b) At a point in a strained material, the principal stresses are 100 MPa and 50 MPa both tensile. Identify the normal and shear stresses at a section inclined at 30° with the axis of the major principal stress.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

