INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043
B.Tech III SEMESTER END EXAMINATIONS (REGULAR / SUPPLEMENTARY) - FEBRUARY 2023

PROBABILISTIC MODELLING AND REASONING
Time: 3 Hours CSE (ARTIFICIAL INTELLIGENCE \& MACHINE LEARNING) Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Determine the variance-covariance matrix for the following data matrix
[BL: Apply| CO: 1|Marks: 7]

$$
\mathbf{X}=\left[\begin{array}{lll}
4.0 & 2.0 & 0.60 \\
4.2 & 2.1 & 0.59 \\
3.9 & 2.0 & 0.58 \\
4.3 & 2.1 & 0.62 \\
4.1 & 2.2 & 0.63
\end{array}\right]
$$

(b) Compute the singular value decomposition of the following matrix:

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Determine the moment generating function of exponential distribution and hence obtain its mean, variance and kurtosis.
[BL: Understand| CO: 2|Marks: 7]
(b) Most graduate schools of business require applicants for admission to take the graduate management admission council's GMAT examination. Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112 .
i) What is the probability of an individual scoring above 500 on the GMAT?
Ii) How high must an individual score on the GMAT in order to score in the highest 5% ?
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) A random sample of 100 students gave a mean weight of 58 kg and standard deviation of 4 kg . Find the 95% and 99% confidence limits of mean of the population.[BL: Apply| CO: $3 \mid \mathrm{Marks}: 7]$
(b) Suppose X is a single observation from a population with probability density function given by: $f(x)=\theta x^{\theta-1}$ for $0<x<1$. Find the test with the best critical region that is, find the most powerful test, with significance level $\alpha=0.05$, for testing the simple null hypothesis $\mathrm{H}_{0}: \theta=3$ against the simple alternative hypothesis $\mathrm{H}_{\mathrm{A}}: \theta=2$ with 5% significance level.
[BL: Apply| CO: 3|Marks: 7]
4. (a) The mean life time of a sample of 169 light bulbs manufactured by a company is found to be 1350 hours with a standard deviation of 100 hours. Establish 90 confidence limits within which the mean life time of light bulbs is expected to lie.
[BL: Apply| CO: 3|Marks: 7]
(b) Consider tirst a particular θ_{1} where $\theta_{1}>2$ and apply the Neyman-Pearson lemma to the hypotheses $\mathrm{H}_{0}: \theta=2 \mathrm{vs} \mathrm{H}_{1}: \theta=\theta_{1}$ where $f\left(\frac{x}{\theta}\right)=\frac{1}{\theta} e^{\frac{-x}{\theta}}$ for $\mathrm{x} \geq 0$ and 0 otherwise. Calculate C^{*} and k^{*}. with 5% significance level.
[BL: Apply| CO: 3|Marks: 7]

MODULE - IV

5. (a) State and prove the invariance property of MLE with an example. Give any two applications of MLE in real life situations.
[BL: Understand| CO: 4|Marks: 7]
(b) Find the Cramer-Rao lower bound for any unbiased estimator of the parameter μ for the normal density $f\left(\mathrm{x} / \mu, \sigma^{2}\right)=k e^{-\frac{1}{2}\left(\left(\frac{x-\mu}{\sigma}\right)^{2}\right)}$ where $\mathrm{k}=\frac{1}{\sqrt{2 \pi} \sigma}$, based on the single observation sample.
[BL: Apply| CO: 4|Marks: 7]
6. (a) Obtain C.R lower bound for parameter ' λ ' when random samples are drawn from Poisson distribution with parameter ' λ '.
[BL: Apply| CO: 4|Marks: 7]
(b) Write about Maximum likelihood estimation (MLE). Obtain the MLE of the parameter θ when random observations are drawn from uniform distribution with density given as
$f(x, \theta)=\frac{1}{\theta}: 0<x<\theta \theta>0$
[BL: Apply| CO: 4|Marks: 7]

MODULE - V

7. (a) There are two bags in a game. First bag contains 5 red, 6 white balls and the second bag contains 3 red, 4 white balls. One bag is selected at random and a ball is drawn from it. If it is found to be red, what is the probability of
i) Selecting the first bag
ii) Selecting the second bag (Use Bayes' Rule).
[BL: Apply| CO: $6 \mid$ Marks: 7$]$
(b) Consider a binary symmetric communication channel, whose input source is the alphabet $\mathrm{X}=$ $\{0,1\}$ with probabilities $\{0.5,0.5\}$; output alphabet $\mathrm{Y}=\{0,1\}$ and with channel matrix:
Where ϵ is the probability of transmission error.
i) What is the entropy of the source, $\mathrm{H}(\mathrm{X})$?
ii) What is the probability distribution of the outputs, $\mathrm{p}(\mathrm{Y})$, and what is the entropy of this output distribution, $\mathrm{H}(\mathrm{Y})$?
iii) What is the joint probability distribution for the source and the output, $\mathrm{p}(\mathrm{X}, \mathrm{Y})$, and what is the joint entropy, $\mathrm{H}(\mathrm{X}, \mathrm{Y})$?
[BL: Apply| CO: 6|Marks: 7]
8. (a) If the probability that a communication system will have high fidelity is 0.81 and the probability that it will have selectivity and fidelity is 0.18 . what is the probability that a system with high fidelity will also have high selectivity?
[BL: Apply| CO: 6|Marks: 7]
(b) Three machines A, B, C with capacities proportional to $2: 3: 4$ is producing bullets. The probabilities that the machines produce defectives are $0.1,0.2$ and 0.1 respectively. A bullet is taken from a day's production and found to be defective. What is the probability that it came from
i) Machine A ii) Machine C.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

