INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500043
B.Tech ${ }^{\text {FqiII SEMESTER END EXAMINATIONS (REGULAR / SUPPLEMENTARY) - FEBRUARY } 2023}$ Regulation: UG20
COMPUTER ORGANIZATION AND ARCHITECTURE
Common to (CSE \| CSE (AI\&ML) | CSE (DS) | CSE (CS) | CSIT \| IT)
Time: 3 Hours
Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Classify different memory chips.Discuss the process of memory read and memory write operations with the help of timing diagrams.
[BL: Understand| CO: 1|Marks: 7]
(b) Show the code to perform the computation $\mathrm{X}=\mathrm{A}+(\mathrm{B}-\mathrm{C})+\mathrm{D}$ using microprocessors that use the following instruction formats. Do not modify the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . If necessary use temporary location T to store intermediate results.
i) Three- operand instructions
ii) Two-operand instructions
iii) One- operand instructions
iv) Zero-operand instructions
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) State the arithmetic microoperations. Draw block diagram of a control memory and the associated hardware needed for selecting the next micro instruction address.
[BL: Understand| CO: 2|Marks: 7]
(b) Design a 4-bit arithmetic circuit for the addition, subtraction, increment and decrement by using 4X1 MUX and two selection lines.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Explain about floating-point representation in computer arithmetic with example. Why floatingpoint number is more difficult to represent and process than integer?
[BL: Understand| CO: 3|Marks: 7]
(b) Convert
i) $(\mathrm{A} 03.56 \mathrm{~B})_{16}$ to decimal
ii) $(101011101.10111)_{2}$ to Hexa decimal number system.
iii) $(52.75)_{10}$ to binary
iv) $(378.93)_{10}$ to octal number system.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Illustrate specific types of overflow and underflow encountered in standard FP representation.
[BL: Understand| CO: 4|Marks: 7]
(b) Perform the arithmetic operations in binary using signed 2's complement representation for the following numbers:
i) $(+41)+(-13)$ ii) $(-41)-(-13)$ iii $)(+41)-(+13)$ iv) $(-41)+(+13)$. [BL: Apply| CO: $4 \mid$ Marks: 7$]$

MODULE - IV

5. (a) Differentiate isolated I/O and memory mapped I/O. Explain in detail about strobe control method of asynchronous data transfer.
[BL: Understand| CO: 5|Marks: 7]
(b) A two way set associative cache has lines of 16 bytes and a total size of 8 K bytes. The 64 Mbytes main memory is byte addressable. Show the format of main memory address.
[BL: Apply| CO: 5|Marks: 7]
6. (a) Compare cache and main memory. Illustrate the mapping process involved in transformation of data from main to Cache memory. [BL: Understand| CO: 5|Marks: 7]
(b) Describe the interrupt driven transfer scheme using block diagram. Distinguish interrupt driven data transfer scheme with DMA.
[BL: Understand| CO: 5|Marks: 7]

MODULE - V

7. (a) Elucidate inter processor communication. Explain in detail about crossbar switch used in multiprocessor organization.
[BL: Understand| CO: 6|Marks: 7]
(b) Explain in detail the six-segment pipeline showing the time it takes to process ten tasks with a space time diagram.
[BL: Understand| CO: $6 \mid$ Marks: 7$]$
8. (a) Discuss the characteristics of multi-processors. Distinguish the internal organization of attached array processor and SIMD array processor.
[BL: Understand| CO: 6|Marks: 7]
(b) Draw the arithmetic pipeline diagram and explain different pipelining techniques. How addressing modes affect the instruction pipelining.
[BL: Understand| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

