Time: 3 Hours (Electronics and communication engineering) Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Explain joint probability and conditional probability. State and prove Baye's theorem.
[BL: Understand| CO: 1|Marks: 7]
(b) If the probability that a communication system has high selectivity is 0.54 and the probability that it will have high fidelity is 0.81 and the probability that it will have both is 0.18 , find the probability that
i) A system with high fidelity will also have high selectivity
ii) A system with high selectivity will also have fidelity
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) List the properties of distribution function. Explain and determine central limit theorem
[BL: Understand| CO: $2 \mid$ Marks: 7$]$
(b) The joint p.d.f. of the two dimensional random variable is $\left\{\begin{array}{ll}\frac{4 x y}{9}, & 1<x<2,1<y<2 \\ 0 & \text { elsewere }\end{array}\right.$,
i) Find the marginal density functions of X and Y .
ii) Find the conditional density function of Y given $\mathrm{X}=\mathrm{x}$.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Summarize joint moment generating function of random variables and derive its properties [BL: Understand| CO: 3|Marks: 7]
(b) Two random variables X and Y have the joint characteristic function $\phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)=e^{-2 \omega_{1}^{2}-8 \omega_{2}^{2}}$. Show that X and Y are both zero mean random variables and also that they are uncorrelated.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Describe jointly gaussian random variables, two random variables case and N random variable case Gaussian random variables.
[BL: Understand| CO: 4|Marks: 7]
(b) Let two random variables U and V be linear transformations of X and Y given by $\mathrm{U}=\mathrm{X}-\mathrm{Y}$;
$\mathrm{V}=\mathrm{X}+\mathrm{Y}$. If is a joint density function of X and Y , then find the joint density function of U and V . [BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Write short note on the following
i) Stationary random process
ii) Wide sense stationary random process
iii) Strict sense stationary
[BL: Understand| CO: 5|Marks: 7]
(b) Consider the random process $X(t)=A \cos \omega t+B \sin \omega t$ where A and B are random variables with $\mathrm{E}(\mathrm{A})=0=\mathrm{E}(\mathrm{B})$ and $\mathrm{E}(\mathrm{AB})=0$. Prove that $\mathrm{X}(\mathrm{t})$ is mean ergodic. \quad [BL: Apply| CO: $5 \mid$ Marks: 7]
6. (a) Outline various properties of cross correlation function. Briefly explain about Gaussian random process.
[BL: Understand| CO: 5|Marks: 7]
(b) Consider two random processes $X(t)=A \cos \omega t+B \sin \omega t$ and $Y(t)=B \cos \omega t-A \sin \omega t$ where A and B are uncorrelated, zero mean random variables with same variance and ' ω ' is a constant. Show that $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ are jointly stationary?
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Discuss power density spectrum of a random process and mention its properties
[BL: Understand| CO: 6|Marks: 7]
(b) An ergodic random process is known to have an auto correlation function of the from

$$
R_{X X}(\tau)=\left\{\begin{array}{ll}
1-|\tau|, & |\tau| \leq 1 \\
0, & |\tau|>1
\end{array}, . \text { Find its spectral density. } \quad[\text { BL: Apply| CO: } 6 \mid \text { Marks: } 7]\right.
$$

8. (a) Elucidate the concept of cross power density spectrum and write the relation between cross correlation and cross power spectrum density.
[BL: Understand| CO: 6|Marks: 7]
(b) Find the cross correlation function corresponding to the cross power spectrum

$$
S_{X Y}(\omega)= \begin{cases}a+j b \omega, & |\omega|<1 \\ 0, & \text { elsewere }\end{cases}
$$

[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

