INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal-500043, Hyderabad
B.Tech III SEMESTER END EXAMINATIONS (REGULAR/SUPPLEMENTARY) - FEBRUARY 2023

Regulation:UG20
ANALOG ELECTRONICS
Time: 3 Hours (ELECTRICAL AND ELECTRONICS ENGINEERING) Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Illustrate the operation of a PN junction diode in forward and reverse bias condition with its V-I characteristics.
[BL: Understand| CO: 1|Marks: 7]
(b) Determine the parameters $I_{B}, I_{C}, V_{C E}, V_{C}, V_{E}, V_{B}, V_{B C}$ for the emitter bias circuit shown in Figure 1.
[BL: Apply| CO: 1|Marks: 7]

Figure 1
MODULE - II
2. (a) Develop the expression for input impedance and output impedance for the common drain amplifier with the help of AC equivalent model.
[BL: Understand| CO: 2|Marks: 7]
(b) For N-channel enhancement MOSFET $V_{G S}(\mathrm{Th})=3 \mathrm{~V}, I_{D}(\mathrm{ON})=3 \mathrm{~mA}, V_{G S}(\mathrm{ON})=10 \mathrm{~V}$. Calculate the result value of k for the MOSFET and draw the transfer characteristics when $V_{G S}=5 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}$, 12 V .
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) With neat diagram explain series fed class A power amplifier and derive the expression for maximum efficiency.
[BL: Understand| CO: 3|Marks: 7]
(b) Compute the following for class B power amplifier driven from a 24 V power supply and driving a load of 8 W , if the peak to peak output voltage across the load resistance is 22 V maximum.
i) Input D.C power
ii) Output power
iii) Conversion efficiency.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Discuss in detail about different coupling schemes used in the amplifier along with neat circuit diagram.
[BL: Understand| CO: 4|Marks: 7]
(b) Calculate the DC bias currents and voltages for the circuit shown in Figure 2 to provide V_{o} at one-half the supply voltage (9 V).
[BL: Apply| CO: 4|Marks: 7]

Figure 2

MODULE - IV

5. (a) Develop the expression for input resistance and output resistance of voltage series feedback amplifier. [BL: Understand| CO: 5|Marks: 7]
(b) A current series feedback amplifier shown in Figure 3 has the following parameters: $R_{1}=20 \mathrm{~K} \Omega$, $R_{2}=20 \mathrm{~K} \omega, h_{i e}=2 \mathrm{~K} \Omega, R_{L}=1 \mathrm{~K} \Omega, R_{e}=100 \mathrm{~K} \Omega, h_{f e}=80, h_{r e}=h_{o e}=0$. Calculate GM, $\beta, R_{i f}$ and $A_{v f}$.
[BL: Apply| CO: $5 \mid$ Marks: 7]

Figure 3
6. (a) Outline the operation of RC phase-shift oscillator circuit and derive the expression for the frequency of oscillations.
[BL: Understand| CO: 5|Marks: 7]
(b) Design a RC phase shift oscillator to generate 5 KHz sine wave with 20 V peak to peak amplitude. Draw the designed circuit. Assume $h_{f e}=150$.

MODULE - V

7. (a) Describe the operation of schmitt trigger using opamp and derive the expression for upper and lower threshold voltage.
[BL: Understand| CO: 6|Marks: 7]
(b) Calculate the output voltage of an inverting summing amplifier for the following set of voltages and resistors. Use $R_{f}=1 \mathrm{M} \Omega$,
i) $V_{1}=1 \mathrm{~V}, V_{2}=2 \mathrm{~V}, V_{3}=3 \mathrm{~V}, R_{1}=500 \mathrm{~K} \Omega, R_{2}=1 \mathrm{M} \Omega, R_{3}=1 \mathrm{M} \Omega$
ii) $V_{1}=-2 \mathrm{~V}, V_{2}=3 \mathrm{~V}, V_{3}=1 \mathrm{~V}, R_{1}=200 \mathrm{~K} \Omega, R_{2}=500 \mathrm{k} \Omega, R_{3}=1 \mathrm{M} \Omega$
[BL: Apply| CO: 6|Marks: 7]
8. (a) List the specifications of practical operational amplifier. With neat circuit diagram explain the operation of integrator.
[BL: Understand| CO: 6|Marks: 7]
(b) Design a practical differentiator for maximum frequency of 100 Hz and draw the output waveform for 1 V peak and 100 Hz sine wave.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

