

$\mathbf{MODULE}-\mathbf{I}$

- 1. (a) Illustrate the operation of a PN junction diode in forward and reverse bias condition with its V-I characteristics. [BL: Understand] CO: 1|Marks: 7]
 - (b) Determine the parameters $I_B, I_C, V_{CE}, V_C, V_E, V_B, V_{BC}$ for the emitter bias circuit shown in Figure 1. [BL: Apply] CO: 1|Marks: 7]

$\mathbf{MODULE}-\mathbf{II}$

- 2. (a) Develop the expression for input impedance and output impedance for the common drain amplifier with the help of AC equivalent model. [BL: Understand| CO: 2|Marks: 7]
 - (b) For N-channel enhancement MOSFET V_{GS} (Th)=3V, I_D (ON)=3mA, V_{GS} (ON)=10V. Calculate the result value of k for the MOSFET and draw the transfer characteristics when V_{GS} = 5V, 8V,10V, 12V. [BL: Apply] CO: 2|Marks: 7]

$\mathbf{MODULE}-\mathbf{III}$

3. (a) With neat diagram explain series fed class A power amplifier and derive the expression for maximum efficiency. [BL: Understand] CO: 3|Marks: 7]

- (b) Compute the following for class B power amplifier driven from a 24V power supply and driving a load of 8W, if the peak to peak output voltage across the load resistance is 22V maximum.i) Input D.C power
 - ii) Output power
 - iii) Conversion efficiency.

[BL: Apply] CO: 3|Marks: 7]

- 4. (a) Discuss in detail about different coupling schemes used in the amplifier along with neat circuit diagram. [BL: Understand] CO: 4[Marks: 7]
 - (b) Calculate the DC bias currents and voltages for the circuit shown in Figure 2 to provide V_o at one-half the supply voltage (9V). [BL: Apply] CO: 4|Marks: 7]

Figure 2

- 5. (a) Develop the expression for input resistance and output resistance of voltage series feedback amplifier. [BL: Understand] CO: 5|Marks: 7]
 - (b) A current series feedback amplifier shown in Figure 3 has the following parameters: $R_1=20$ K Ω , $R_2=20$ K ω , $h_{ie}=2$ K Ω , $R_L=1$ K Ω , $R_e=100$ K Ω , $h_{fe}=80$, $h_{re}=h_{oe}=0$. Calculate GM, β , R_{if} and A_{vf} . [BL: Apply] CO: 5|Marks: 7]

Figure 3

6. (a) Outline the operation of RC phase-shift oscillator circuit and derive the expression for the frequency of oscillations. [BL: Understand] CO: 5[Marks: 7]

(b) Design a RC phase shift oscillator to generate 5KHz sine wave with 20V peak to peak amplitude. Draw the designed circuit. Assume h_{fe} =150. [BL: Apply| CO: 5|Marks: 7]

$\mathbf{MODULE}-\mathbf{V}$

- 7. (a) Describe the operation of schmitt trigger using opamp and derive the expression for upper and lower threshold voltage. [BL: Understand] CO: 6|Marks: 7]
 - (b) Calculate the output voltage of an inverting summing amplifier for the following set of voltages and resistors. Use $R_f=1M\Omega$,

i)
$$V_1=1V, V_2=2V, V_3=3V, R_1=500K\Omega, R_2=1M\Omega, R_3=1M\Omega$$

- ii) $V_1 = -2V$, $V_2 = 3V$, $V_3 = 1V$, $R_1 = 200K\Omega$, $R_2 = 500k\Omega$, $R_3 = 1M\Omega$ [BL: Apply] CO: 6[Marks: 7]
- 8. (a) List the specifications of practical operational amplifier. With neat circuit diagram explain the operation of integrator. [BL: Understand] CO: 6|Marks: 7]
 - (b) Design a practical differentiator for maximum frequency of 100Hz and draw the output waveform for 1V peak and 100Hz sine wave. [BL: Apply| CO: 6|Marks: 7]

 $-\circ\circ\bigcirc\circ\circ-$