INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043
B.Tech III SEMESTER END EXAMINATIONS (REGULAR / SUPPLEMENTARY) - FEBRUARY 2023

Regulation: UG20
ANALOG AND DIGITAL ELECTRONICS
Time: 3 Hours Common to (CSE \| CSE (AI\&ML) | CSE (CS) | CSIT \| IT) Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) With neat circuit diagram, explain V-I characteristics of PN junction diode under forward and reverse bias conditions.
[BL: Understand| CO: 1|Marks: 7]
(b) A full-wave rectifier uses two diodes, the internal resistance of each diode is at 20Ω. The transformer RMS voltage from centre tap to each end of secondary is 50 V and load resistance is 980Ω. Find
i) The DC value of current
ii) The RMS value of current.
iii) Ripple factor
iv) Efficiency
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Illustrate the input and output characteristics of an NPN transistor in CE configuration with a circuit diagram .
[BL: Understand| CO: 2|Marks: 7]
(b) The h-parameters of a transistor used in a CE circuit are $h_{i e}=1 k \Omega, h_{r e}=1 \times 10^{-4}, h_{f e}=50$, and $h_{o e}=100 \mu \mho$. The load resistor for the transistor is $1 \mathrm{k} \Omega$ in the collector circuit. Determine the value of i) Input \& output resistance ii) Current gain iii) Voltage gain.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Tabulate any three weighted and one non weighted code values for the decimal numbers 1 to 9 .
[BL: Understand| CO: 3|Marks: 7]
(b) Convert the following
i) 11110010_{2} to octal
ii) $(010101)_{2}$ to decimal
iii) $14 B .032_{H}$ to decimal
iv) 56.79_{10} to hexadecimal
[BL: Apply| CO: 3|Marks: 7]
4. (a) Draw the truth table of logic gates. Build basic gates AND, NOT, OR using NAND and NOR gate.
[BL: Understand| CO: 4|Marks: 7]
(b) Simplify $(A+B)^{\prime}\left(A^{\prime}+B^{\prime}\right)^{\prime}$. Implement $Y=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$ using only NAND gates.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Design a full subtractor circuit by using K-map method and draw the logic diagram.
[BL: Apply| CO: 5|Marks: 7]
(b) Simplify the Boolean function
$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,4,5,6,8,9,12,13,14)$ using K-Map.
[BL: Apply| CO: 5|Marks: 7]
6. (a) What is multiplexer? Draw circuit diagram of $8: 1$ multiplexer and explain its working.
[BL: Understand| CO: 5|Marks: 7]
(b) Find the prime implicants for the following function
$F(A, B, C, D)=\sum(0,1,2,8,10,11,14,15)$ using tabular method.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Draw the block diagram of a 4 bit universal shift register and explain its working with function table.
[BL: Understand| CO: 6|Marks: 7]
(b) Design a 4-bit ring counter using D- flip flops with relevant timing diagrams and explain in detail.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Demonstrate the working of clocked JK flipflop and RS flip-flop using NAND gates with suitable diagrams.
[BL: Understand| CO: 6|Marks: 7]
(b) Differentiate between combinational and sequential circuits. Design a 3 bit SISO shift register using D flip-flop.
[BL: Apply| CO: 6|Marks: 7]
