Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Explain the terms reactance and impedance in AC circuits. Predict the voltage, current, reactance and impedance in series RL circuit using sinusoidal excitation. [BL: Understand| CO: 1|Marks: 7]
(b) A series RLC circuit is supplied at $220 \mathrm{~V}, 50 \mathrm{~Hz}$. At resonance, the voltage across the capacitor is 550 V and current I is equal to 1 A . Determine R, L and C parameters of the circuit.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Elucidate the significance of initial conditions in transients. Determine the transient response for series RL circuit for DC excitation using differential equation approach.
[BL: Understand| CO: $2 \mid$ Marks: 7$]$
(b) A series RC circuit with $\mathrm{R}=10 \Omega$ and $\mathrm{C}=0.1 \mathrm{~F}$ has a constant voltage of $\mathrm{V}=20 \mathrm{~V}$ applied at $\mathrm{t}=0$.Obtain the expression for the transient current using differential equation method.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Discuss the importance of locus diagrams. Draw the locus diagram of series RC circuit when R is varied.
[BL: Understand| CO: 3|Marks: 7]
(b) A 230 volts, 50 Hz source is connected to a series circuit consisting of a resistance of 40 ohms and an inductance which varies between 0.03 H and 0.15 H . Draw the locus diagram of current.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Summarize about driving point functions and transfer functions. Obtain the transform impedance of an inductor.Explain the necessary conditions for driving point functions.
[BL: Understand| CO: 4|Marks: 7]
(b) The Laplace transform of a voltage $\mathrm{v}(\mathrm{t})$ is $\mathrm{V}(\mathrm{s})=4(\mathrm{~s}+1) /(\mathrm{s}+2)(\mathrm{s}+3)$. Draw poles and zeros of this function and determine $\mathrm{v}(\mathrm{t})$ using pole-zero plot.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) What is phase sequence? Obtain the relationship between line and phase voltage in a 3 -phase balanced star connected system.
[BL: Understand| CO: 5|Marks: 7]
(b) A balanced star connected load having an impedance of $(15+\mathrm{j} 20) \Omega$ per phase is connected to a balanced three phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the line currents and the power absorbed by the load.
[BL: Apply| CO: 5|Marks: 7]
6. (a) Write the expression for acive power in case of star and delta systems of three phase circuits. Find the power factor using two wattmeter method for three phase circuits.
[BL: Understand| CO: 5|Marks: 7]
(b) The input power to a three phase load is 10 kW at 0.8 pf . Two wattmeters are connected to measure power, find the individual readings of the wattmeter.
[BL: Apply| CO: 5|Marks: 7]
MODULE - V
7. (a) Classify filters based on the frequency characteristics. Explain the design procedure for constant k low pass filter.
[BL: Understand| CO: 6|Marks: 7]
(b) Design a low pass filter for T section and π section having a cut-off frequency of 2 kHz to operate with a terminated load resistance of 500Ω.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Write the expressions for the characteristic impedance of a T section and π section networks. Explain the design procedure for m-derived high pass filter. [BL: Understand| CO: $6 \mid$ Marks: 7]
(b) Design band pass filter having a design impedance of $4 \mathrm{k} \Omega$ and pass band between 1.25 kHz and 2 kHz .
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

