Time: 3 Hours (ELECTRICAL AND ELECTRONICS ENGINEERING) Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Infer the expression for electric field intensity due to an infinite sheet of charge in the XY plane with uniform charge density ρ_{s}.
[BL: Understand| CO: 1|Marks: 7]
(b) A point charge $\mathrm{Q}=10 \mathrm{nc}$ is located at the origin in cartesian coordinates. Determine the magnitude and direction of electric flux density \vec{D} at $(1,3,4) \mathrm{m}$.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Write the properties of capacitor. Obtain the expression for the capacitance of a co-axial capacitor using Gauss's law.
[BL: Understand| CO: 2|Marks: 7]
(b) An aluminum conductor is 600 m long with a circular cross section and a diameter of 20 mm . If a dc voltage of 1.2 V is applied between them, find i) The current density ii) The current iii) Power dissipated using the knowledge of circuit theory. Assume $\sigma=3.82 \times 10^{7} \mho / \mathrm{m}$ for aluminum.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Determine the magnetic field strength due to a solenoid of length ' l ' and radius ' a ' with N turns carrying a current ' I '.
[BL: Understand| CO: 3|Marks: 7]
(b) Calculate the magnetic flux density due to a coil of 1000 ampere turns and area of $100 \mathrm{~cm}^{2}$ on the axis of coil at a distance of 10 m from the center.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Illustrate the expression for magnetic field intensity on the axis of the circular loop carrying a steady current ' I '.
[BL: Understand| CO: 3|Marks: 7]
(b) State Biot-Savart's law. Given points $\mathrm{C}(5,-2,3)$ and $\mathrm{P}(4,-1,2)$; a current element $\mathrm{IdL}=10^{-4}[4 \widehat{a x}+3 \widehat{a y}+a \widehat{z}] A m$ at C produces a field dH at P . Find dH .
[BL: Apply| CO: 3|Marks: 7]

MODULE - IV

5. (a) Derive the torque equation about the Y axis for the two conductors of length 'l' separated by a fixed distance ' w ', in the uniform field of flux density.
[BL: Understand| CO: 4|Marks: 7]
(b) A point charge $\mathrm{Q}=-50 \mathrm{nc}$ is moving with a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction specified by unit vector $-0.4 \overrightarrow{a_{x}}-0.6 \overrightarrow{a_{y}}+0.6 \overrightarrow{a_{z}}$. Determine the magnitude of the force on a moving charge in the magnetic field of flux density $\vec{B}=2 \overrightarrow{a_{x}}-6 \overrightarrow{a_{y}}+5 \overrightarrow{a_{z}} \mathrm{mWb} / \mathrm{m}^{2}$.
[BL: Apply| CO: 4|Marks: 7]
6. (a) Find the inductance of a parallel two wire transmission line separated by a distance‘d' carrying currents in opposite directions.
[BL: Understand| CO: 4|Marks: 7]
(b) Two long parallel conduction carrying 100A. If the conductors are separated by 200 mm . Find the force per meter of each conductor if the current flow direction is in opposite direction.
[BL: Apply| CO: 4|Marks: 7]

MODULE - V

7. (a) Develop the Maxwell's equations in point form and integral form using Ampere's circuital law and Faraday's law.
[BL: Understand| CO: 5|Marks: 7]
(b) Find the conduction and displacement current densities in a material having conductivity of 10^{-3} \mho / m and $\epsilon_{r}=2.5$ if the electric field in the material is $\mathrm{E}=5.8 \times 10^{-6} \sin \left(9 \times 10^{9} \mathrm{t}\right) \mathrm{V} / \mathrm{m}$.
[BL: Apply| CO: 5|Marks: 7]
8. (a) From Maxwell's equations, determine the electromagnetic wave equation in dielectric medium $\left(\rho_{v}=0\right)$ for \vec{E} and \vec{H} fields.
[BL: Understand| CO: 5|Marks: 7]
(b) A conductor of length 100 cm moves at right angles to a uniform field of strength 10000 lines per cm^{2}, with a velocity of 50 meters $/ \mathrm{sec}$. Calculate the emf induced in it. Compute also the value of the induced emf when the conductor moves at an angle of 30 degrees to the direction of the field.
[BL: Apply| CO: 5|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

