B.Tech III SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024 Regulation: UG20
ENGINEERING THERMODYNAMICS
Time: 3 Hours (AERONAUTICAL ENGINEERING)

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) What is a thermodynamic system? List the different types of thermodynamic systems and explain them in detail.
[BL: Understand| CO: 1|Marks: 7]
(b) A closed system of constant volume experiences a temperature rise of $25^{\circ} \mathrm{C}$ when a certain process occurs. The heat transferred in the process is 30 kJ . The specific heat atconstant volume for the puresubstance comprising the system is $1.2 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$, and the systemcontains 2.5 kg of this substance. Determine
i) The change in internal energy
ii) The work done.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Write the limitations of first law of thermodynamics. State the law of thermodynamics for
i) Clausius statement
ii) Kelvin-Planck statement.
[BL: Understand| CO: 2|Marks: 7]
(b) Find the co-efficient of performance and heat transfer rate in the condenser of a refrigerator in kJ / h which has a refrigeration capacity of $12000 \mathrm{~kJ} / \mathrm{h}$ when power input is 0.75 kW .

$$
\text { [BL: Apply| CO: } 2 \mid \text { Marks: } 7]
$$

MODULE - III

3. (a) Outline about pure substance. Draw and explain a p-T (pressure-temperature) diagram for a pure substance.
[BL: Understand| CO: 3|Marks: 7]
(b) A vessel having a capacity of $0.05 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $245^{\circ} \mathrm{C}$. The mass of the liquid present is 10 kg . Find the following
i) Pressure
ii) Mass
iii) Specific volume
iv) Specific enthalpy
v) Specific entropy
vi) Specific internal energy.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Describe the process of formation of steam and give its graphical representation.
[BL: Understand| CO: 4|Marks: 7]
(b) A quantity of steam at 10 bar and 0.85 dryness occupies $0.15 \mathrm{~m}^{3}$. Determine the heat supplied to raise the temperature of the steam to $300^{\circ} \mathrm{C}$ at constant pressure and percentage of this heat which appears as external work. Take specific heat of superheated steam as $2.2 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Explain in detail about the dual cycle and its processes using PV and TS diagram.
[BL: Understand| CO: 5|Marks: 7]
(b) An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is $0.00263 \mathrm{~m}^{3}$. The initial pressure and temperature are 1 bar and $50^{\circ} \mathrm{C}$. If the maximum pressure is limited to 25 bar, find the following:
i) The air standard efficiency of the cycle.
ii) The mean effective pressure for the cycle. Assume the ideal conditions.
[BL: Apply| CO: 5|Marks: 7].
6. (a) Compare Otto, diesel and dual combustion cycles with following variable factors:
i) Compression ratio
ii) Maximum pressure
iii) Network
[BL: Understand| CO: 5|Marks: 7]
(b) The minimum pressure and temperature in an Otto cycle are 100 kPa and $27^{\circ} \mathrm{C}$. The amount of heat added to the air per cycle is $1500 \mathrm{~kJ} / \mathrm{kg}$.
i) Determine the pressures and temperatures at all points of the air standard Otto cycle.
ii) Also calculate the specific work and thermal efficiency of the cycle for a compression ratio of
$8: 1$. Take for air : $\mathrm{cv}=0.72 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, and $\gamma=1.4$.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Classify the heat exchangers and explain shell and tube heat exchanger in detail with a neat sketch.
[BL: Understand| CO: 6|Marks: 7]
(b) A mild steel tank of wall thickness 12 mm contains water at $95^{\circ} \mathrm{C}$. The thermal conductivity of mild steel is $50 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, and the heat transfer coefficients for the inside and outside the tank are 2850 and $10 \mathrm{~W} / m^{2}{ }^{\circ} \mathrm{C}$, respectively. If the atmospheric temperature is $15^{\circ} \mathrm{C}$, calculate
i) The rate of heat loss per m^{2} of the tank surface area
ii) The temperature of the outside surface of the tank.
[BL: Apply| CO: 6|Marks: 7]
8. (a) List varoius air compressors and explain the operation principle of reciprocating air compressor in details with its sketch.
[BL: Understand| CO: 6|Marks: 7]
(b) The interior of a refrigerator having inside dimensions of $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ base area and 1 m height, is to be maintained at $6^{\circ} \mathrm{C}$. The walls of the refrigerator are constructed using two mild steel sheets having thickness of $3 \mathrm{~mm}\left(\mathrm{k}=46.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$ with 50 mm of glass wool insulation (k $=0.046 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$) between them. If the average heat transfer coefficients at the inner and outer surfaces are $11.6 \mathrm{~W} / m^{2 \circ} \mathrm{C}$ and $14.5 \mathrm{~W} / m^{2 \circ} \mathrm{C}$ respectively, calculate :
i) The rate at which heat must be removed from the interior to maintain the specified temperature in the kitchen at $25^{\circ} \mathrm{C}$
ii) The temperature on the outer surface of the metal sheet.
[BL: Apply| CO: 6|Marks: 7]
