MODULE - I

1. (a) What is fatigue failure? Explain about low cycle fatigue and high cycle fatigue with proper example.
[BL: Understand| CO: 1|Marks: 7]
(b) A 50 mm diameter shaft is made from carbon steel having ultimate tensile strength of 630 MPa . It is subjected to a torque which fluctuate between $2000 \mathrm{~N}-\mathrm{m}$ to $-800 \mathrm{~N}-\mathrm{m}$. Using Soderberg method, calculate the factor of safety. Assume suitable values for any other data needed.

> [BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Obtain load-displacement relationship by using principle of the stationary value of the total complementary energy for non-linear form.
[BL: Understand| CO: 2|Marks: 7]
(b) A steel rod 5 m long and of 40 mm diameter is used as a column, with one end fixed and the other free. Determine the crippling load by Euler's formula. Take E as 200 GPa.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Describe the manufacturing process involved in laminated fiber-reinforced composite materials.
[BL: Understand| CO: 3|Marks: 7]
(b) Write the number of independent elastic constants for three dimensional anisentropic, monoclinic, orthotropic, transversely isotropic, and isotropic.
[BL: Understand| CO: 3|Marks: 7]
4. (a) Classify polymer matrix composites with examples. Write the advantages of composite materials.
[BL: Understand| CO: 4|Marks: 7]
(b) Enumerate six primary material selection parameters that are used in evaluating the use of a particular material.
[BL: Understand| CO: 4|Marks: 7]

MODULE - IV

5. (a) Interpret the shear stress distribution of a closed section beam having shear flow q and rigidity modulus G at a built-in end of a closed section beam.
[BL: Understand| CO: 5|Marks: 7]
(b) Calculate the shear stress distribution at the built-in end of the beam shown in Figure 1 when, at this section, it carries a shear load of 22000 N acting at a distance of 100 mm from and parallel to side 12 . The modulus of rigidity G is constant through out the section and the wall length dimensions are given in Table 1.

Table 1

Wall	12	34	23
Length(mm)	375	125	500

Figure 1
6. (a) Interpret the rate of twist and the shear flows (and hence shear stresses) in the beam in terms of the warping and the applied torque T based on the compatibility of displacement which exists at the cover/boom/web junctions.
[BL: Understand| CO: 5|Marks: 7]
(b) A thin-walled beam with the singly symmetrical cross-section shown in Figure 2 is built-in at one end where the shear force $\mathrm{Sy}=111250 \mathrm{~N}$ is applied through the web 25 . Assuming the cross-section remains undistorted by the loading, determine the shear flow and the position of the centre of twist at the built-in end. The shear modulus G is the same for all walls.
[BL: Apply| CO: 5|Marks: 7]

Figure 2

MODULE - V

7. (a) Illustrate the I-section beam subjected to torsion such that a beam is axially unconstrained and loaded by a pure torque T .
(b) An axially symmetric beam has the thin-walled cross-section shown in Figure 3. If the thickness t is constant throughout and making the usual assumptions for a thin-walled cross-section, show that the torsion bending constant τ_{R} calculated about the shear centre S is $\tau_{R}=13 / 12 d^{5} \mathrm{t}$.
[BL: Apply| CO: 6|Marks: 7]

Figure 3
8. (a) Elucidate the Bi moment for an open section beam subjected to concentrated loads parallel to its longitudinal axis.
(b) The column shown in Figure 4 carries a vertical load of 100 kN . Calculate the angle of twist at the top of the column and the distribution of direct stress at its base. $\mathrm{E}=200000 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{G} / \mathrm{E}=0.36$.
[BL: Apply| CO: 6|Marks: 7]

Figure 4

