MODULE - I

1. (a) Explore the step-by-step process of the Euclidean algorithm, which involves iteratively applying the division remainder operation until reaching a remainder of zero.
[BL: Understand| CO: 1|Marks: 7]
(b) Solve the simultaneous congruences $x=6(\bmod 11), x=13(\bmod 16), x=9(\bmod 21), x=19(\bmod 25)$.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) What are subrings, ideals, and quotient rings in abstract algebra, and how do these concepts contribute to the study of ring theory and algebraic structures?
[BL: Understand| CO: 2|Marks: 7]
(b) Let R be a group of all real numbers under addition and $\mathrm{R}+$ be a group of all positive real numbers under multiplication. Show that the mapping $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}+$ defined by $\mathrm{f}(\mathrm{x})=2^{x}$ for all $\mathrm{x} R$ is an isomorphism.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Write about discrete-random processes. How do they differ from continuous-random processes? Describe the key characteristics and components of discrete-random processes.
[BL: Understand| CO: 3|Marks: 7]
(b) Outline about conditional probability in terms of the probability of event B given event A , denoted as $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$, and discuss how it can be calculated using the formula $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\mathrm{P}(\mathrm{A} \cap \mathrm{B}) / \mathrm{P}(\mathrm{A})$, where $P(A \cap B)$ represents the probability of both events A and B occurring.
[BL: Understand| CO: 3|Marks: 7]
4. (a) Describe the essential components of Markov chains, including state spaces, transition probabilities, and the memoryless property with transition diagram.
[BL: Understand| CO: 4|Marks: 7]
(b) The record of weights of the male population follows the normal distribution. Its mean and standard deviations are 70 kg and 15 kg respectively. If a researcher considers the records of 50 males, then what would be the mean and standard deviation of the chosen sample? Using central limit theorem.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Explore the principles behind next-bit predictors, which aim to forecast the value of the next bit in a data stream based on patterns and correlations observed in previous bits.
[BL: Understand| CO: 5|Marks: 7]
(b) Let C be a binary $(5,3)$ code with generator matrix, $\mathrm{G}=101101101001001$
i) Reduce G to standard form.
ii) Find a parity-check matrix for C.
iii) Write out the elements of the dual code C
[BL: Apply| CO: 5|Marks: 7].
6. (a) Compare and contrast the error detection and correction capabilities of Hamming codes, Hadamard codes, and Goppa codes in the context of forward error correction.
[BL: Understand| CO: 5|Marks: 7]
(b) A binary symmetric channel has probability $\mathrm{p}=0.05$ of incorrect transmission. If the code word $\mathrm{c}=011011101$ is transmitted. What is the probability that
i) We receive $r=011111101$
ii) We receive $\mathrm{r}=111011100$
iii) A single error occurs
iv) A double error occurs
v) A triple error occurs
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Write the importance of pseudorandom number generation in various computational tasks, including simulations, cryptography, and randomized algorithms. Explain the different types used to generate pseudorandom numbers.
[BL: Understand| CO: $6 \mid$ Marks: 7$]$
(b) Describe in detail about Blum blum shub bit generator. Find the first 8 bits for Blum blum shub bit generator when seed $=101355$ and $\mathrm{n}=192649$.
[BL: Understand| CO: 6|Marks: 7]
8. (a) Discuss in detail about random and pseudorandom generators with necessary diagrams and differentiate them.
[BL: Understand| CO: 6|Marks: 7]
(b) Show that A PRG G passes all polynomial time statistical tests if and only if it passes all polynomial time next-bit tests.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

