B.Tech III SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024

Regulation: UG20
FLUID MECHANICS
Time: 3 Hours
(CIVIL ENGINEERING)
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) State Newton's law of viscosity. Explain in detail about the effects of surface tension by citing practical applications.
[BL: Understand| CO: 1|Marks: 7]
(b) A clean tube of diameter 2.5 mm is immersed in a liquid with a coefficient of surface tension as $0.4 \mathrm{~N} / \mathrm{m}$. The angle of the liquid with the glass can be assumed to be 135°. The density of the liquid $=13600 \mathrm{~kg} / \mathrm{m}^{3}$. What would be the level of the liquid in the tube relative to the free surface of the liquid inside the tube.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Write about centre of pressure. Derive an expression for centre of pressure for a vertically submerged surface.
[BL: Understand| CO: 2|Marks: 7]
(b) A rectangular plate 3 m long and 1 m wide is immersed vertically in water in such a way that its 3 m side is parallel to the water surfaces and is 1 m below it. Find
i) Total pressure on the plate
ii) Position of centre of pressure.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) List different types of fluid flow. Obtain an expression for 2D flow continuity equation.
[BL: Understand| CO: 3|Marks: 7]
(b) A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm and 15 cm respectively. If the average velocity in the 30 cm diameter pipe is $2.5 \mathrm{~m} / \mathrm{s}$, find the discharge in the pipe. Also determine the velocity in 15 cm pipe if the average velocity in 20 cm diameter pipe is $2 \mathrm{~m} / \mathrm{s}$.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Discuss about irrotational flow. Show that a Laplace equation is satisfied in potential flows stream function and velocity potential function [BL: Understand| CO: 4|Marks: 7]
(b) The velocity vector in a fluid flow is $\mathrm{V}=4 x^{3} \mathrm{i}-10 x^{2} \mathrm{yj}+2 \mathrm{tk}$. Find the velocity and acceleration of a fluid particle at $(2,1,3)$ at time $\mathrm{t}=1$.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Name the different forces present in a fluid flow. Derive Euler's equation of motion along a stream line for an ideal fluid.
[BL: Understand| CO: 5|Marks: 7]
(b) Water is flowing through a pipe of 5 cm diameter under a pressure of $29.43 \mathrm{~N} / \mathrm{cm}^{3}$ (gauge) and with mean velocity of $2.0 \mathrm{~m} / \mathrm{s}$. Find the total head or total energy per unit weight of the water at a cross section which is 5 m above the datum line.
[BL: Apply| CO: 5|Marks: 7].
6. (a) Differentiate between the pitot tube and pitot static tube. Describe in detail about the pressure force on a curved section of pipe.
[BL: Understand| CO: 5|Marks: 7]
(b) The water is flowing through a tapering pipe having diameters 300 mm and 150 mm at a section 1 and 2 respectively. The discharge through the pipe is 40 liters/sec. The section 1 is about 10 m above datum and section 2 is 6 m above datum. Find the intensity of pressure at section 2 if that at section 1 is $400 \mathrm{kN} / \mathrm{m}^{2}$.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Develop the expression for head loss in pipes due to friction- Darcy - Weisbach equation.
[BL: Understand| CO: 6|Marks: 7]
(b) The pressure intensities in the large and small pipe are given as $13.734 \mathrm{~N} / \mathrm{cm}^{2}$ and $11.772 \mathrm{~N} / \mathrm{cm}^{2}$. Find the loss of head due to contraction if $\mathrm{cc}=0.62$. Also determine the rate of flow of water.
[BL: Apply| CO: $6 \mid$ Marks: 7]
8. (a) State the importance of Hardy cross method. Enumerate all the minor losses in the pipes with their formulas to estimate their magnitude.
[BL: Understand| CO: 6|Marks: 7]
(b) The rate of flow of water through a horizontal pipe is $0.25 \mathrm{~m}^{3} / \mathrm{s}$. The diameter of the pipe which is 200 mm is suddenly enlarged to 400 mm . Determine loss of head due to sudden enlargement.
[BL: Apply| CO: 6|Marks: 7]
$-\circ \circ \bigcirc \circ \circ-$
