MODULE - I

1. (a) State precipitation and several forms of precipitation. Explain in brief about measurement of precipitation with its limitations and their applications. [BL: Understand| CO: 1|Marks: 7]
(b) The mean annual rainfall in mm at 4 rain gauge stations in catchment area are 1050, 790, 700 and 660 . If error in estimation of mean rainfall not exceeded 10%. Determine the additional number of rain gauges needed.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Write about infiltration and its significance in environmental studies. Discuss various methods of measurement of infiltration and factors influencing these methods.
[BL: Understand| CO: 2|Marks: 7]
(b) In a 10 hr storm rainfall depths occurred over a catchment data is given in Table 1. Surface runoff resulting from the storm is equivalent to 20 cm of depth over the catchment. Determine
i) Average infiltration ii) Average rate of infiltration
[BL: Apply| CO: 2|Marks: 7]
Table 1

hours	1	2	3	4	5	6	7	8	9	10
Depths $(\mathrm{cm} / \mathrm{hr})$	1	1.5	5	6	10.5	8.5	9	7	1.5	1.5

MODULE - III

3. (a) Mention the factors affecting runoff hydrograph and explain how hydrograph analysis helps in flood forecasting and mitigation?
[BL: Understand| CO: 3|Marks: 7]
(b) A drainage basin has the following characteristics. Basin area $=100$ sq.m. Length of the main stream $\mathrm{L}=18 \mathrm{~m}$. Distance from the centroid of the basin to outlet $=10 \mathrm{~m}$. Construct the 4 hour synthetic unit hydrograph for the basin if $C_{t}=1.8$ and $C_{p}=0.6$.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Describe the concept of equilibrium equations for confined and unconfined aquifers and state the key difference between them.
[BL: Understand| CO: 4|Marks: 7]
(b) Calculate the diameter of the well that will have a discharge of 300 litre/sec with a drawdown of 6 m in an unconfined aquifer of thickness of 40 m . The radius of influence is 300 m and the coefficient of permeability is $100 \mathrm{~m} /$ day.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Discuss the various merits and demerits of irrigation. Explain about consumptive and non-consumptive use of water.
[BL: Understand| CO: 5|Marks: 7]
(b) The following data given in Table 2 are the details of various crops grown in culturable area of 2000 hectares. Determine the discharge.
[BL: Apply| CO: 5|Marks: 7]
Table 2

Sr. No.	Crop	Intensity of irrigation (\%)	Kor period(days)	Kor depth(cm)
1	Wheat	40%	16	15
2	Jowar	50%	10	12

6. (a) Compare and contrast the Kennedy's and Lacey's theory. Analyze the impact of various channel parameters on the design outcomes.
[BL: Understand| CO: 5|Marks: 7]
(b) Design an irrigation channel to carry 40 cumecs of discharge with B/D i.e. width to depth ratio as 2.5. The critical velocity ratio is 1.0. Assume a suitable value of Kutter's coefficient and use Kennedy's method.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Summarize about gravity dam and causes of failure. Compare the suitability of gravity dams with other dams.
[BL: Understand| CO: 6|Marks: 7]
(b) Design an overflow spillway section for a design discharge of $1500 \mathrm{~m}^{3} / \mathrm{sec}$. the upstream water surface level is at elevation 240 m and the upstream channel floor is at 200 m the spillway, having a vertical face, is 50 m long.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Elucidate about reservoirs and its components. Discuss how the components function to ensure safety of the reservoir.
[BL: Understand| CO: 6|Marks: 7]
(b) The Figure 1 shows the section of a gravity dam (non-overflow portion) built of concrete.

Calculate major principal stress at the toe of the dam.
[BL: Apply| CO: 6|Marks: 7]

Figure 1

