MODULE - I

1. (a) Summarize about asymptotic notations. Describe briefly Big oh notation, Theta notation with suitable diagram.
[BL: Understand| CO: 1|Marks: 7]
(b) Write selection sort algorithm. Consider an array of elements $\{23,12,18,42,29,37,15,10\}$, perform sorting using selection sort technique.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Outline the insert and delete operations that can be performed on a deque with an algorithm. Justify with suitable example.
[BL: Understand| CO: 2|Marks: 7]
(b) Convert given infix expression: $(a+b * c) *(e+f / g)$ to postfix expression using stack and show the details of stack at each step of conversion.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Implement a circular queue of integer of user specified size and write the functions for initialize(), enqueue() and dequeue().
[BL: Understand| CO: 3|Marks: 7]
(b) Singly linked list contain the following values: 33, 44, 55, 66, 77, 88. Write the pseudocode for following operations:
i) Insert a new value 50 before 55 .
ii) Print the list in reverse order like $88,77,66,55,50,44,33$ and display the result.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Write the insert operations in front, middle and end position in doubly-linked list with example and neat diagram
[BL: Understand| CO: 4|Marks: 7]
(b) Construct the circular doubly linked list in given elements 5, 11, 9, 4. Compute the following operation.
i) Insertion of node 6 at the beginning.
ii) Deleting the first node from a circular doubly linked list.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) What do you mean by graph traversal? Illustrate the depth first search traversal of a graph with an example.
[BL: Understand| CO: 5|Marks: 7]
(b) For the following graph shown in Figure 1, find the graph traversal using BFS technique, starting at node A. Explain the step by step procedure for traversal.
[BL: Apply| CO: 5|Marks: 7].

Figure 1
6. (a) Summarize about preorder, inorder and postorder traversal of a binary tree with an algorithm and provide suitable example.
[BL: Understand| CO: 5|Marks: 7]
(b) Construct minimum spanning tree for the graph shown in Figure 2 using Prim's algorithm and find the cost of minimum spanning tree (MST).
[BL: Apply| CO: 5|Marks: 7]

Figure 2

MODULE - V

7. (a) Illustrate the properties of binary search tree (BST). Demonstrate the AVL tree rotaion techniques with example and with suitable diagram.
[BL: Understand| CO: 6|Marks: 7]
(b) Show each step of the AVL tree built from a sequence of insertions corresponding to the following key : 10159121379453622.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Summarize about hashing. Outline the following collision resolution techniques with suitable examples: i) Separate chaining ii) Open addressing.
[BL: Understand| CO: 6|Marks: 7]
(b) Insert the following sequence of elements into a binary search tree, starting with an empty tree: $50,30,60,38,55,22,59,94,13,98$.
Perform the following operations and show all the steps.
[BL: Apply| CO: 6|Marks: 7]
i) Delete 30 and display the tree
ii) Delete 50 and display the tree
