INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal-500043, Hyderabad
B.Tech V SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024

Regulation: UG20
COMPETITIVE PROGRAMMING USING GRAPH ALGORITHMS
Time: 3 Hours
(CSE \| CSE (AI\&ML) | CSE (DS) | CSE (CS) | CSIT \| IT) Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Elaborate the adjacency matrix in a graph. Explain how is it used to represent graph connectivity?
[BL: Understand| CO: 1|Marks: 7]
(b) Mention the basic conditions to be satisfied for two graphs to be isomorphic. Are the two graphs shown in Figure 1 are isomorphic? Justify with valid reasons
[BL: Apply| CO: 1|Marks: 7]

Figure 1
MODULE - II
2. (a) Outline the concept of cuts in graphs, including cut vertices and cut edges, with examples.
[BL: Understand| CO: 2|Marks: 7]
(b) Consider a weighted directed graph G with 4 vertices and the following adjacency matrix repre-
senting the graph: $\mathrm{A}=\left[\begin{array}{cccc}0 & 3 & \infty & 5 \\ \infty & 0 & 1 & \infty \\ \infty & \infty & 0 & 2 \\ \infty & \infty & \infty & 0\end{array}\right]$ Use the Floyd-Warshall algorithm to find the shortest paths between all pairs of vertices in the graph G.
[BL: Apply| CO: 2|Marks: 7]
MODULE - III
3. (a) Compare and contrast Eulerian paths/cycles with Hamiltonian paths/cycles.
[BL: Understand| CO: 3|Marks: 7]
(b) A traveling salesperson needs to visit 5 cities (A, B, C, D, E) and return to the starting city. The distances between the cities are given as follows:
A to B: 10 units
A to C: 15 units
A to D: 20 units
A to E: 25 units
B to C: 35 units
B to D: 30 units
B to E: 20 units
C to D: 25 units
C to E: 30 units
D to E: 15 units
Find the shortest possible route that visits each city exactly once and returns to the starting city using the nearest neighbor algorithm.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Explain how does the railway network connector problem apply to real-world scenarios.
[BL: Understand| CO: 4|Marks: 7]
(b) Consider a connected undirected graph G with 6 vertices and the following set of edges:
$\mathrm{E}=(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(4,5),(4,6),(5,6)$
Use Kruskal's algorithm to find the minimum spanning tree (MST) of the graph G.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Summarize about directed paths, tournaments, and cycles in directed graphs, emphasizing their characteristics.
[BL: Understand| CO: 5|Marks: 7]
(b) Given a set of directed graphs, identify DAGs and propose algorithms for topological sorting to solve real-world problems like sentence ordering.
[BL: Apply| CO: 5|Marks: 7].
6. (a) Describe in detail about connectivity and strongly connected digraphs. Distinguish between cyclic and acyclic graphs [BL: Understand| CO: 5|Marks: 7]
(b) Build a connected graph G and find two spanning trees T_{1} and T_{2} of G such that the distance $\left(T_{1}, T_{2}\right)=3$. Find the branch set, chord set, rank and nullity of T_{1}. [BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Discuss Euler's formula and Tutte's conjecture in the context of planar embeddings of trees and graphs.
[BL: Understand| CO: 6|Marks: 7]
(b) Explore and present real-world applications of Kuratowski's Theorem, delving into how its principles can be employed to solve practical non-planarity challenges in different contexts.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Elaborate the detection of planarity in graphs, distinguishing between combinational and geometric graphs.
[BL: Understand| CO: 6|Marks: 7]
(b) Analyze and justify why K_{5} and $K_{3,3}$ cannot be drawn in a plane without edge crossings.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

