INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)
 Dundigal-500043, Hyderabad
 B.Tech III SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024 Regulation: UG20
 PROBABILITY THEORY AND STOCHASTIC PROCESS

Time: 3 Hours (Electronics and communication engineering) Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) State and prove total probability theorem.Discuss about conditional probability and mention their properties.
[BL: Understand| CO: 1|Marks: 7]
(b) The number of monthly breakdown of a computer is a random variable having a Poisson distribution with mean equal to 1.8 . Find the probability that this computer will function for a month
i) Without a breakdown
ii) With only one breakdown
iii) With at least one breakdown.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Summarize joint probability distribution functions and central limit theorem. Discuss their properties.
[BL: Understand| CO: 2|Marks: 7]
(b) A coin is tossed 300 times. Using central limit theorem, find the probability that heads will appear more than 140 times and less than 150 times.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Outline about transformation of random variables. Show that the linear transformation of vector Gaussian random variable is another vector Gaussian random variable.
[BL: Understand| CO: 3|Marks: 7]
(b) Two random variables X and Y have the joint density function
$f(x, y)= \begin{cases}2-x-y & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}$
Find the covariance between X and Y .
[BL: Apply| CO: 3|Marks: 7]
4. (a) Discuss any four properties of the covariance between two random variables with suitable examples.
[BL: Understand| CO: 4|Marks: 7]
(b) The joint probability density function of X and Y is given by $f(x, y)=e^{-(x+y)}$.

Find the probability density function of $U=\frac{X+Y}{2}$
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Write short notes on strict sense and wide sense stationary process. State and prove any two properties of cross correlation function.
[BL: Understand| CO: 5|Marks: 7]
(b) Prove that the random process $X(t)=A \cos (\omega t+\theta)$ is correlation Ergodic where A and ω are constants and θ is uniformly distributed random variable in $(0,2 \pi)$.
[BL: Apply| CO: 5|Marks: 7].
6. (a) Obtain an expression for cross correlation function of input and output processes of a linear time invariant (LTI) system.
[BL: Understand| CO: 5|Marks: 7]
(b) If $X(t)$ is a Gaussian process with $\mu(t)=10$ and $c\left(t_{1}, t_{2}\right)=16 e^{\left|t_{1}-t_{2}\right|}$, find the probability that i) $X(10) \leq 8$ ii) $|X(2)-X(6)| \leq 4$.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Discuss about power density spectrum. Determine the cross power spectral density of input and output random processes of a linear time invariant system.
[BL: Understand| CO: 6|Marks: 7]
(b) The Cross power spectrum of a real random process $X(t)$ and $Y(t)$ is given by $S_{x, y}(\omega)=\left\{\begin{array}{ll}a+b i \omega & |\omega|<1 \\ 0 & \text { otherwise }\end{array}\right.$. Find the cross correlation function.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Write short notes on noise bandwith. Distinguish between white and colored noises. Where these noises are observed? Explain.
[BL: Understand| CO: 6|Marks: 7]
(b) If $N(t)$ is band limited Gaussian white noise centered at a carrier frequency ω_{0} with a power spectral density $S_{N N}(\omega)=\left\{\begin{array}{ll}\frac{N_{0}}{2} & \left|\omega-\omega_{0}\right| \leq \omega_{B} \\ 0 & \text { otherwise }\end{array}\right.$.
Find the autocorrelation of $N(t)$.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

