INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal-500043, Hyderabad

B.Tech III SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024 Regulation: UG20

PROBABILITY THEORY AND STOCHASTIC PROCESS

Time: 3 Hours (ELECTRONICS AND COMMUNICATION ENGINEERING) Max Marks: 70

Answer ALL questions in Module I and II Answer ONE out of two questions in Modules III, IV and V All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{MODULE}-\mathbf{I}$

- 1. (a) State and prove total probability theorem.Discuss about conditional probability and mention their properties. [BL: Understand] CO: 1|Marks: 7]
 - (b) The number of monthly breakdown of a computer is a random variable having a Poisson distribution with mean equal to 1.8. Find the probability that this computer will function for a month
 - i) Without a breakdown
 - ii) With only one breakdown
 - iii) With at least one breakdown.

[BL: Apply| CO: 1|Marks: 7]

$\mathbf{MODULE}-\mathbf{II}$

- 2. (a) Summarize joint probability distribution functions and central limit theorem. Discuss their properties. [BL: Understand] CO: 2|Marks: 7]
 - (b) A coin is tossed 300 times. Using central limit theorem, find the probability that heads will appear more than 140 times and less than 150 times.

[BL: Apply] CO: 2|Marks: 7]

$\mathbf{MODULE}-\mathbf{III}$

3. (a) Outline about transformation of random variables. Show that the linear transformation of vector Gaussian random variable is another vector Gaussian random variable.

1

[BL: Understand| CO: 3|Marks: 7]

[BL: Apply] CO: 3 Marks: 7]

(b) Two random variables X and Y have the joint density function

$$f(x,y) = \begin{cases} 2-x-y & 0 \le x \le 1, 0 \le y \le \\ 0 & otherwise \end{cases}$$

Find the covariance between X and Y.

- 4. (a) Discuss any four properties of the covariance between two random variables with suitable examples. [BL: Understand| CO: 4|Marks: 7]
 - (b) The joint probability density function of X and Y is given by $f(x, y) = e^{-(x+y)}$. Find the probability density function of $U = \frac{X+Y}{2}$ [BL: Apply| CO: 4|Marks: 7]

$\mathbf{MODULE}-\mathbf{IV}$

- 5. (a) Write short notes on strict sense and wide sense stationary process. State and prove any two properties of cross correlation function. [BL: Understand| CO: 5|Marks: 7]
 - (b) Prove that the random process $X(t) = A\cos(\omega t + \theta)$ is correlation Ergodic where A and ω are constants and θ is uniformly distributed random variable in $(0, 2\pi)$.

[BL: Apply] CO: 5|Marks: 7].

- 6. (a) Obtain an expression for cross correlation function of input and output processes of a linear time invariant (LTI) system. [BL: Understand| CO: 5|Marks: 7]
 - (b) If X(t) is a Gaussian process with $\mu(t) = 10$ and $c(t_1, t_2) = 16e^{|t_1-t_2|}$, find the probability that i) $X(10) \le 8$ ii) $|X(2) - X(6)| \le 4$. [BL: Apply| CO: 5|Marks: 7]

$\mathbf{MODULE}-\mathbf{V}$

7. (a) Discuss about power density spectrum. Determine the cross power spectral density of input and output random processes of a linear time invariant system.

[BL: Understand| CO: 6|Marks: 7]

(b) The Cross power spectrum of a real random process X(t) and Y(t) is given by

 $S_{x,y}(\omega) = \begin{cases} a + bi\omega & |\omega| < 1\\ 0 & otherwise \end{cases}$. Find the cross correlation function.

[BL: Apply] CO: 6|Marks: 7]

- 8. (a) Write short notes on noise bandwith. Distinguish between white and colored noises. Where these noises are observed? Explain. [BL: Understand| CO: 6|Marks: 7]
 - (b) If N(t) is band limited Gaussian white noise centered at a carrier frequency ω_0 with a power spectral density $S_{NN}(\omega) = \begin{cases} \frac{N_0}{2} & |\omega \omega_0| \le \omega_B \\ 0 & otherwise \end{cases}$.

Find the autocorrelation of N(t).

[BL: Apply] CO: 6|Marks: 7]

 $-\circ\circ\bigcirc\circ\circ-$