INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal-500043, Hyderabad

B.Tech III SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024 Regulation: UG20

ANALOG ELECTRONICS

Time: 3 Hours (ELECTRICAL AND ELECTRONICS ENGINEERING)Max Marks: 70

Answer ALL questions in Module I and II Answer ONE out of two questions in Modules III, IV and V All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{MODULE}-\mathbf{I}$

1. (a) Outline the working of P-N junction diode and draw the V-I characteristics of the diode.

[BL: Understand] CO: 1|Marks: 7]

(b) Find the value of DC resistance and AC resistance of a Germanium junction diode at 250° C with reverse saturation current, $I_o = 25\mu$ A and at an applied voltage of 0.2V across the diode?

[BL: Apply| CO: 1|Marks: 7]

$\mathbf{MODULE}-\mathbf{II}$

- 2. (a) Explain in detail about the terms gain, input and output impedances of a N channel MOSFET. [BL: Understand| CO: 2|Marks: 7]
 - (b) For the CS amplifier given that $R_i = 5k\Omega$, $R_1 = 5M\Omega$, $R_2 = 1M\Omega$, $R_D = 10 k\Omega$, $R_S = 3k\Omega$, $R_3 = 50 \Omega$, $R_L = 20 k\Omega$, V + = 24 V, V - = -24 V, $K_0 = 0.001 A/V_2$, $V_{TO} = 1.75 V$, $\Lambda = 0.016 V-1$. Solve for the gain Av $= v_o/v_i$, the input resistance r_{in} , and the output resistance r_{out} . The capacitors can be assumed to be AC short circuit at the operating frequency. [BL: Apply] CO: 2|Marks: 7]

MODULE – III

- 3. (a) Discuss the different coupling schemes which are used in amplifiers. List out the applications of different power amplifiers. [BL: Understand| CO: 3|Marks: 7]
 - (b) The two-stage amplifier shown in Figure 1 uses transistors Q_1 and Q_2 , both having current gain β of 80 and dynamic emitter resistance, r'e, of 25 Ω each. Find out the overall voltage gain of the amplifier. [BL: Apply] CO: 3|Marks: 7]

Figure 1

- 4. (a) Summarize the following terms of amplifier
 - i) Frequency response
 - ii) Decibel gain
 - iii) Bandwidth [BL: Understand] CO: 4|Marks: 7]
 - (b) For a class B amplifier using a supply of $V_{CC} = 12$ V and driving a load of 8 Ω , determine
 - i) Maximum load power
 - ii) DC input power
 - iii) Collector efficiency.

$\mathbf{MODULE}-\mathbf{IV}$

- 5. (a) State the need for feedback. Write the advantages and disadvantages of positive and negative feedback. [BL: Understand] CO: 5[Marks: 7]
 - (b) Draw and design a Hartley oscillator with $L_1 = 2$ mH, $L_2 = 20\mu$ H, mutual inductance, M = 40μ H and a variable capacitance. Determine the range of capacitance values, if the frequency range of oscillation is varied between 750 kHz and 3000 kHz. [BL: Apply] CO: 5[Marks: 7]
- 6. (a) What is the frequency for RC phase shift oscillator? Explain how better frequency stability is obtained in crystal oscillator? [BL: Understand] CO: 5|Marks: 7]
 - (b) Choose the value of capacitor C and transistor gain h_{fe} to provide an oscillator frequency of $f_o = 2$ kHz for the circuit in Figure 2. The circuit values are $h_{ie} = 2$ k Ω ; $R_1 = 20$ k Ω ; $R_2 = 80$ k Ω ; $R_c = 10$ k Ω and R = 8 k Ω . Also find the value of feedback resistor R_3 .

[BL: Apply| CO: 5|Marks: 7].

[BL: Apply] CO: 4|Marks: 7]

MODULE - V

- 7. (a) Examine the DC and AC performance characteristics of operational amplifier. Differentiate between open loop and closed loop gain of op amp. [BL: Understand] CO: 6[Marks: 7]
 - (b) Determine the input impedance and output voltage for the circuit in Figure 3.

[BL: Apply] CO: 6|Marks: 7]

Figure 3

- 8. (a) Describe the working of a square wave generator using op-amp. List the specifications of practical op amp. [BL: Understand| CO: 6|Marks: 7]
 - (b) Calculate the total offset voltage for the circuit of Figure 4 for an op-amp with specified values of input offset voltage, $V_{IO} = 4$ mV and input offset current $I_{IO} = 150$ nA.

[BL: Apply] CO: 6|Marks: 7]

Figure 4

 $-\circ\circ\bigcirc\circ\circ-$