

$\mathbf{MODULE}-\mathbf{I}$

- 1. (a) Compare open loop system with closed loop system. Explain the concept of negative feedback system with real time applications. [BL: Understand] CO: 1|Marks: 7]
 - (b) Draw the force voltage and force current analogous circuit for the mechanical system shown in Figure 1. [BL: Apply] CO: 1|Marks: 7]

$\mathbf{MODULE}-\mathbf{II}$

- 2. (a) Obtain an expression for first order system subjected to unit step input and sketch the response of the system. [BL: Understand| CO: 2|Marks: 7]
 - (b) Determine the transfer function of the system shown in Figure 2 using block diagram reduction technique. [BL: Apply] CO: 2|Marks: 7]

Figure 2

$\mathbf{MODULE}-\mathbf{III}$

- 3. (a) Explain the limitations in Routh Hurwitz criterion and summarize the methods to overcome those limitations with examples. [BL: Understand| CO: 3|Marks: 7]
 - (b) Determine the stability of the system whose characteristic equation is given by $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16=0$. Comment on the location of poles in s-plane using Routh Hurwitz criterion. [BL: Apply] CO: 3|Marks: 7]
- 4. (a) How will you find the gain K at a point on root locus? Enumerate the concept of relative stability and BIBO with examples. [BL: Understand] CO: 4|Marks: 7]
 - (b) Sketch the root locus for a unity feedback control system whose open loop transfer function is given by $G(S) = \frac{K}{(s+2)(s+4)}$. [BL: Apply| CO: 4|Marks: 7]

MODULE - IV

- 5. (a) What is frequency response? Explain the various frequency domain specifications with examples. [BL: Understand] CO: 5|Marks: 7]
 - (b) Sketch the Bode plot for a unity feedback control system whose open loop transfer function is given by $G(s) = \frac{1}{s(s+10)}$

[BL: Apply] CO: 5|Marks: 7]

6. (a) Summarize the procedure for investigating stability using Nyquist stability criterion.

[BL: Understand] CO: 5|Marks: 7]

(b) Check the stability of the system using Nyquist plot whose open loop transfer function is given by $G(s) = \frac{1}{s(1+2s)(1+s)}$ [BL: Apply| CO: 5|Marks: 7]

$\mathbf{MODULE}-\mathbf{V}$

- 7. (a) Explain the pole zero plot of lag compensator and explain its properties. Distinguish between lead and lag compensators. [BL: Understand| CO: 6|Marks: 7]
 - (b) Obtain the transfer function for the given state model

[BL: Apply] CO: 6|Marks: 7]

$\begin{bmatrix} \dot{x_1} \end{bmatrix}$		$\left[-2\right]$	1	0	$\begin{bmatrix} x_1 \end{bmatrix}$	[0				$\begin{bmatrix} x_1 \end{bmatrix}$
$\dot{x_2}$	=	0	-3	1	$ x_2 $	+	0	u, y= $\begin{bmatrix} 0 \end{bmatrix}$	1	0	$ x_2 $
$\begin{bmatrix} \dot{x_3} \end{bmatrix}$		$\lfloor -3 \rfloor$	-4	-5	$\begin{bmatrix} x_3 \end{bmatrix}$		1				$\begin{bmatrix} x_3 \end{bmatrix}$

- 8. (a) State the duality between controllability and observability. Outline the concept of observability and controllability with examples. [BL: Understand| CO: 6|Marks: 7]
 - (b) Find the state transition matrix whose system matrix is given by

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 \end{bmatrix} \text{ and } D = \begin{bmatrix} 0 \end{bmatrix}.$$
 [BL: Apply| CO: 6|Marks: 7]

 $-\circ\circ\bigcirc\circ\circ-$