B.Tech III SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024

Regulation: UG20
NETWORK ANALYSIS
Time: 3 Hours
(ELECTRICAL AND ELECTRONICS ENGINEERING)
Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Determine the steady-state behavior in a series R-C circuit when exposed to sinusoidal excitation. Develop the essential equations with phasor diagrams.
[BL: Understand| CO: 1|Marks: 7]
(b) A 50Ω resistor is connected in series with an inductor having internal resistance, a capacitor and 100 V variable frequency supply as shown in Figure 1. At a frequency of 200 Hz , a maximum current of 0.7 A flows through the circuit and voltage across the capacitor is 200 V . Determine the circuit constants.

Figure 1

MODULE - II

2. (a) Determine the transient response of a series R-L circuit with DC input. Sketch the variation of current and the voltage across the inductor.
[BL: Understand| CO: 2|Marks: 7]
(b) A series circuit shown in Figure 2 comprising of a resistance of 10Ω and an inductance of 0.5 H , is connected to a 100 V source at $\mathrm{t}=0$. Determine the complete expression for the current $\mathrm{i}(\mathrm{t})$.
[BL: Apply| CO: 2|Marks: 7]

Figure 2
MODULE - III
3. (a) Evaluate the attributes of the locus diagram for an RC circuit where resistance is variable and reactance is fixed. Provide a detailed explanation of how the impedance varies concerning frequency in this specific circuit configuration. [BL: Understand| CO: 3|Marks: 7]
(b) For the parallel circuit shown in Figure 3, V $=200 \mathrm{~V} ; R_{2}=50 \Omega ; X_{1}=25 \Omega . R_{l}$ is varied from 10Ω to 50Ω, draw the locus diagram. Find maximum and minimum values of source current.
[BL: Apply| CO: 3|Marks: 7]

Figure 3
4. (a) What is the substantial impact of poles and zeros on the behavior of network functions, and how do these elements provide insights into the dynamic characteristics of systems?
[BL: Understand| CO: 3 |Marks: 7]
(b) For the network shown in Figure 4, obtain the transfer functions $G_{21}(\mathrm{~S}), Z_{21}(\mathrm{~S})$, and driving-point impedance $Z_{11}(\mathrm{~S})$.
[BL: Apply| CO: 3|Marks: 7]

Figure 4

MODULE - IV

5. (a) Describe the arrangement of a three-phase system through star (wye) and delta connections, offering flexibility based on application requirements and electrical characteristics.
[BL: Understand| CO: 4|Marks: 7]
(b) A symmetrical three-phase, three-wire 440 V supply is connected to a star-connected load as shown in Figure 5. The impedances in each branch are $Z_{R}=(2+\mathrm{j} 3) \Omega, Z_{Y}=(1-\mathrm{j} 2) \Omega$ \& $Z_{B}=(3+\mathrm{j} 4) \Omega$. Find its equivalent delta-connected load. The phase sequence is RYB.
[BL: Apply| CO: 4|Marks: 7]

Figure 5
6. (a) Elaborate three-phase unbalanced delta-connected load, accompanied by a clear sketch. Further, derive the relevant equations for current and voltage in this configuration.
[BL: Understand| CO: 4|Marks: 7]
(b) The two-wattmeter method is used to measure power in a three-phase load. The wattmeter readings are 400 W and -35 W . Calculate
i) Total active power
ii) Power factor
iii) Reactive power.
[BL: Apply| CO: 4|Marks: 7]

MODULE - V

7. (a) Develop the equation for a T-network filter by explaining its components and applying impedance relationships within the network.
[BL: Understand| CO: 5|Marks: 7]
(b) Design a T and π network of a constant-k low-pass filter having cut-off frequency of 1 kHz , design impedance of 400Ω.
[BL: Apply| CO: 5|Marks: 7]
8. (a) Describe the bandpass filter and deduce equations for characteristic impedance, elucidating how this filter allows a specific range of frequencies while maintaining signal quality.
[BL: Understand| CO: 5|Marks: 7]
(b) Design a band-elimination filter having a design impedance of 600Ω and cut-off frequencies $f_{1}=2 \mathrm{kHz}$ and $f_{2}=6 \mathrm{kHz}$.
[BL: Apply| CO: 5|Marks: 7]
$-\circ \circ \bigcirc \circ \circ-$
