Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) List the important characteristics of DC generators. Explain the construction and various parts of DC generator with neat sketch.
[BL: Understand| CO: 1|Marks: 7]
(b) An 8-pole DC shunt generator with 778 wave-connected armature conductors and running at 500 RPM supplies a load of 12.5Ω resistance at terminal voltage of 50 V . The armature resistance is 0.24Ω and the field resistance is 250Ω. Find the armature current, the induced EMF and the flux per pole.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Explain the concept of back EMF in DC motors and mention its significance.
[BL: Understand| CO: 2|Marks: 7]
(b) A DC series motor takes 40 A at 220 V and runs at 800 RPM . If the armature and field resistance are 0.2Ω and 0.1Ω respectively and the iron and friction losses are 0.5 kW , find the torque developed in the armature. What will be the output of the motor? [BL: Apply| CO: $2 \mid$ Marks: 7]

MODULE - III

3. (a) Illustrate speed control methods available for DC shunt motors with neat sketch.
[BL: Understand| CO: 3|Marks: 7]
(b) A 250 V DC shunt motor has armature resistance of 0.25 ohm , on load it takes an armature current of 50 A and runs at 750 RPM . If the flux of motor is reduced by 10% without changing the load torque, find the new speed of the motor?
[BL: Apply| CO: 3|Marks: 7]
4. (a) Demonstrate Swinburne's test to obtain the efficiency when running as motor and generator with a suitable circuit diagram.
[BL: Understand| CO: 4|Marks: 7]
(b) In a brake test the effective load on the branch pulley was 38.1 kg . The effective diameter of the pulley is 63.5 cm and speed 12 RPS. If the motor takes 49 A at 220 V , calculate the output power and the efficiency at this load.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Classify the types of single-phase transformers. Obtain the expression for EMF equation of a single-phase transformer.
[BL: Understand| CO: 5|Marks: 7]
(b) A $25-\mathrm{kVA}$ transformer has 500 turns on the primary and 50 turns on the secondary winding. The primary is connected to $3000-\mathrm{V}, 50-\mathrm{Hz}$ supply. Find the full-load primary and secondary currents, the secondary EMF and the maximum flux in the core. Neglect leakage drops and no-load primary current.
[BL: Apply| CO: 5|Marks: 7].
6. (a) Outline the procedure for conducting the open circuit test for a single-phase transformer to find the no-load losses with neat circuit.
[BL: Understand| CO: 5|Marks: 7]
(b) A $100-\mathrm{kVA}$ lighting transformer has a full-load loss of 3 kW , the losses being equally divided between iron and copper. During a day, the transformer operates on full-load for 3 hours, one half-load for 4 hours, the output being negligible for the reminder of the day. Calculate the all-day efficiency.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Describe the working principle of star-star connection of three-phase transformer with neat circuit diagram.
[BL: Understand| CO: 6|Marks: 7]
(b) A balanced 3-phase load of 150 kW at $1000 \mathrm{~V}, 0.866$ lagging power factor is supplied from 2000 V, 3-phase mains through single-phase transformers (assumed to be ideal) connected in
i) Delta-delta
ii) Vee-Vee.

Find the current in the windings of each transformer and they operate in each case?
[BL: Apply| CO: 6|Marks: 7]
8. (a) Elucidate the construction and working principle of on load tap changer with neat sketch.
[BL: Understand| CO: 6|Marks: 7]
(b) Two transformers are required for a Scott connection operating from a 440-V, 3-phase supply for supplying two single-phase furnaces at 200 V on the two-phase side. If the total output is 150 kVA , calculate the secondary to primary turn ratio and the winding currents of each transformer.
[BL: Apply| CO: 6|Marks: 7]
$-\circ \circ \bigcirc \circ \circ-$

