INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal-500043, Hyderabad

B.Tech V SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024

Regulation: UG20

POWER ELECTRONICS

Time: 3 Hours (ELECTRICAL AND ELECTRONICS ENGINEERING) Max Marks: 70

Answer ALL questions in Module I and II Answer ONE out of two questions in Modules III, IV and V All Questions Carry Equal Marks All parts of the question must be answered in one place only

MODULE - I

- 1. (a) Describe about metal oxide semiconductor field effect transistor (MOSFET) and it's I-V switching characteristics. [BL: Understand] CO: 1|Marks: 7]
 - (b) Classify the firing circuits used for line commutated converter. Illustrate the RC firing circuit with the necessary waveforms when $\alpha = 90^{0}$. [BL: Apply] CO: 1|Marks: 7]

$\mathbf{MODULE}-\mathbf{II}$

- (a) Demonstrate the operation of single-phase half wave converter with RL load at α=30⁰ with necessary wave forms. Also derive the output voltage, output current and RMS output voltages.
 [BL: Understand] CO: 2|Marks: 7]
 - (b) A single phase fully controlled converter supplies an inductive load. Assuming load current is constant=10A.Determine the following quantities if supply voltage is 230V,50 Hz and α =40⁰. Calculate the
 - i) Average output voltage of converter ii) Supply RMS current
 - iii) Supply fundamental RMS current iv) Fundamental power factor
 - v) Supply power factor vi) Supply harmonic factor. [BL: Apply] CO: 2|Marks: 7]

$\mathbf{MODULE}-\mathbf{III}$

- 3. (a) Write the types of choppers based on voltage levels. Explain the step-up chopper with neat diagrams. [BL: Understand| CO: 3|Marks: 7]
 - (b) A step-up chopper has input voltage of 220V and output voltage of 660v. If non- conduction time of thyristor is 100µsec. Determine on time of chopper. If on-time is halved for constant frequency operation, find the new output voltage?
 (BL: Apply| CO: 3|Marks: 7]
- 4. (a) Illustrate the boost converter operation with help of diagram and also draw the output waveforms. [BL: Understand] CO: 4|Marks: 7]
 - (b) The boost converter has an input voltage of E_{DC} =5V.the required average output voltage is E_0 =15V and the average load current I₀=0.5A. The switching frequency is 25 kHz. If L=150 mH and C=220 μ F. Determine
 - i) Duty cycle
 - ii) Ripple current of inductor δI
 - iii) Peak current of inductor I_2
 - iv) Ripple voltage of filter capacitor $\Delta V_C d$
 - v) Critical values of L and C.

[BL: Apply| CO: 4|Marks: 7]

$\mathbf{MODULE}-\mathbf{IV}$

5. (a) Illustrate the principle of operation of single phase to single phase step- down bridge type cycloconverter with resistive inductive load for continuous load current.

[BL: Understand] CO: 5|Marks: 7]

- (b) The input voltage of the cycloconverter is 120V(RMS). The load resistance is 5 Ω and the inductance is L=40 mH. The frequency of the output voltage is 25Hz. If the converters are operated as semi-converters that $0 \le \alpha \le \pi$. The delay angle is $\alpha_p = 2\pi/3$, determine i) RMS value of output voltage V₀
 - ii) RMS value of output voltage V_0
 - iii) Input power factor
- 6. (a) Outline the operation of single phase full wave AC voltage controller with R-L load.

[BL: Understand] CO: 5|Marks: 7]

[BL: Apply] CO: 5|Marks: 7].

- (b) The single phase full wave AC voltage controller has a resistive load of R=5 Ω and the input voltage V_S=120V(RMS),50HZ. The delay angles of thyristors T₁ and T₂ are equal i.e., $\alpha 1=\alpha 2=2\pi/3$. Determine
 - i) RMS output voltage ii) Input power factor
 - iii) Average current of thyristor iv) RMS current of thyristor. [BL: Apply] CO: 5|Marks: 7]

$\mathbf{MODULE}-\mathbf{V}$

- 7. (a) Illustrate why thyristors are not preferred for inverters? Summarize about the operation of single phase current source inverter. [BL: Understand] CO: 6|Marks: 7]
 - (b) Single phase half bridge inverter has a resistive load of 2 Ω . The DC supply voltage is 24V. Calculate
 - i) RMS output voltage at fundamental frequency
 - ii) Output power
 - iii) Average and peak current.

[BL: Apply| CO: 6|Marks: 7]

- 8. (a) List the applications of a series inverter. Summarize about the operation of Mc Murray-Bedford half bridge inverters. [BL: Understand] CO: 6|Marks: 7]
 - (b) A single PWM full bridge inverter feeds an RL load with $R=10\Omega$ and L=10 mH. If the source voltage is 110V, calculate the total harmonic distortion in the output voltage and in the load current. The width of each pulse is 120° and the output frequency is 60Hz.

[BL: Apply] CO: 6|Marks: 7]

 $-\circ\circ\bigcirc\circ\circ-$

Page 2 of 2