B.Tech III SEMESTER END EXAMINATIONS (REGULAR/ SUPPLEMENTARY) - FEBRUARY 2024

Regulation: UG20
THERMODYNAMICS
Time: 3 Hours
(MECHANICAL ENGINEERING)
Max Marks: 70

Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) What is a thermodynamic system? List the different types of thermodynamic systems. Explain them in detail.
[BL: Understand| CO: 1|Marks: 7]
(b) A closed system of constant volume experiences a temperature rise of $25^{\circ} \mathrm{C}$ when a certain process occurs. The heat transferred in the process is 30 kJ . The specific heat at constant volume for the pure substance comprising the system is $1.2 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$, and the system contains 2.5 kg of this substance. Determine:
i) Change in internal energy
ii) Work done.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Write the limitations of first law of thermodynamics. State the laws of thermodynamics for
i) Clausius statement
ii) Kelvin-Planck statement.
[BL: Understand| CO: 2|Marks: 7]
(b) Find the co-efficient of performance and heat transfer rate in the condenser of a refrigerator in kJ / h which has a refrigeration capacity of $12000 \mathrm{~kJ} / \mathrm{h}$ when power input is 0.75 kW .

> [BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Outline about pure substance. Draw and explain a P - T (pressure-temperature) diagram for a pure substance.
[BL: Understand| CO: 3|Marks: 7]
(b) A vessel having a capacity of 0.05 m 3 contains a mixture of saturated water and saturated steam at a temperature of $245^{\circ} \mathrm{C}$. The mass of the liquid present is 10 kg . Find the following
i) Pressure
ii) Mass
iii) Specific volume
iv) Specific enthalpy
v) Specific entropy
vi) Specific internal energy.
[BL: Apply| CO: 3|Marks: 7]
4. (a) State Vander Waals equation. Explain, how the heat and work transfer observed in perfect gas? [BL: Understand| CO: 4|Marks: 7]
(b) 0.5 kg of air is compressed reversibly and adiabatically from $80 \mathrm{kPa}, 60^{\circ} \mathrm{C}$ to 0.4 MPa , and is then expanded at constant pressure to the original volume. Sketch these processes on the P - V and T - S planes. Compute the heat transfer and work transfer for the whole path.

> [BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Outline the concept of dew point temperature. Compare dry bulb temperature and wet bulb temperature with a sketch.
[BL: Understand| CO: 5|Marks: 7]
(b) A vessel of $0.35 \mathrm{~m}^{3}$ capacity contains 0.4 kg of carbon monoxide (molecular weight $=28$) and 1 kg of air at $20^{\circ} \mathrm{C}$. Calculate:
i) Partial pressure of each constituent
ii) Total pressure in the vessel, and the gravimetric analysis of air is to be taken as 23.3% oxygen (molecular weight $=32$) and 76.7% nitrogen (molecular weight $=28$).
[BL: Apply| CO: 5|Marks: 7].
6. (a) Summarize Avogadro's laws of additive volumes. Compare volumetric and gravimetric analysis of mixtures.
[BL: Understand| CO: 5|Marks: 7]
(b) The atmospheric conditions are; $20^{\circ} \mathrm{C}$ and specific humidity of $0.0095 \mathrm{~kg} / \mathrm{kg}$ of dry air. Calculate the following:
i) Partial pressure of vapour
ii) Relative humidity
iii) Dew point temperature.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Explain in details the dual cycle and its processes in detail using P-V and T-S diagram.
[BL: Understand| CO: $5 \mid$ Marks: 7]
(b) An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is $0.00263 \mathrm{~m}^{3}$. The initial pressure and temperature are 1 bar and $50^{\circ} \mathrm{C}$. If the maximum pressure is limited to 25 bar, find the following:
i) The air standard efficiency of the cycle.
ii) The mean effective pressure for the cycle. Assume the ideal conditions.
[BL: Apply| CO: 5|Marks: 7].
8. (a) Compare Otto, Diesel and Dual combustion cycles with following variable factors:
i) Compression ratio
ii) Maximum pressure
iii) Network done
[BL: Understand| CO: 5|Marks: 7]
(b) The minimum pressure and temperature in an Otto cycle are 100 kPa and $27^{\circ} \mathrm{C}$. The amount of heat added to the air per cycle is $1500 \mathrm{~kJ} / \mathrm{kg}$.
i) Determine the pressures and temperatures at all points of the air standard Otto cycle.
ii) Also calculate the specific work and thermal efficiency of the cycle for a compression ratio of

8: 1. Take for air : $C_{v}=0.72 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$, and $\gamma=1.4$.
[BL: Apply| CO: 5|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

