
(Autonomous)
B.TECH II Semester End Examinations (Regular) AUGUST- 2021

Regulation:UG20
ELECTRICAL CIRCUITS
Time: 3 Hours
(ECE|EEE)
Max Marks: 70
Answer all questions in Modules I and II
Answer ONE out of two questions from Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Explain the following terms:
i) Ideal and practical sources of energy ii) Active \& passive elements
(b) Find the RMS value of current for the periodic waveform shown in Figure 1.

Figure 1

MODULE - II
2. (a) Explain about source transformation phenomenon of independent voltage and current sources.
[7M]
(b) Apply mesh analysis and calculate the current flowing through 3Ω element for the network shown in Figure 2

Figure 2

MODULE - III

3. (a) State and prove Thevenin's theorem with an example for DC excitation.
(b) Find the Thevenin's voltage and Thevenin's resistance of the network shown in Figure 3. [7M]

Figure 3
4. (a) Derive the condition for Norton's theorem with AC excitation and verify with an example. [7M]
(b) Calculate the maximum power delivered across R_{L} of the circuit shown in Figure 4.

Figure 4

MODULE - IV

5. (a) State Faraday's law of electro-magnetic induction.Write the similarities between magnetic and electric circuits.
(b) Find the voltage across 5Ω resistor in the circuit for dots as given in the Figure 5.

Figure 5
6. (a) Explain about the self-inductance and mutual inductance between the coils.
(b) Calculate the equivalent self inductance of the following inductive circuit shown in Figure 6.

Figure 6

MODULE - V

7. (a) What are ABCD transmission parameters? Explain with corresponding equations. Write the condition for symmetry and reciprocity of ABCD parameters.
(b) The parameters of two port network are $\mathrm{Z}_{11}=20 \Omega, \mathrm{Z}_{22}=30 \Omega, \mathrm{Z}_{12}=\mathrm{Z}_{21}=10 \Omega$. Determine Y and H parameters of the network.
8. (a) What is meant by duality? Explain the principle of duality. What is the procedure to obtain the dual network?
(b) Write the tie-set matrix for the network graph shown in Figure 7 by selecting a tree with branches $3,4,5$.

Figure 7

$$
-\circ \circ \bigcirc \circ \circ-
$$

