

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.TECH II Semester End Examinations (Regular) AUGUST- 2021

Regulation:UG20

ELECTRICAL CIRCUITS

Time: 3 Hours (ECE|EEE) Max Marks: 70

Answer all questions in Modules I and II

Answer ONE out of two questions from Modules III, IV and V

(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V)

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

MODULE - I

- 1. (a) Explain the following terms:
 - i) Ideal and practical sources of energy ii) Active & passive elements

[7M]

(b) Find the RMS value of current for the periodic waveform shown in Figure 1.

[7M]

Figure 1

MODULE - II

2. (a) Explain about source transformation phenomenon of independent voltage and current sources.

[7M]

(b) Apply mesh analysis and calculate the current flowing through 3Ω element for the network shown in Figure 2 [7M]

Figure 2

MODULE - III

- 3. (a) State and prove Thevenin's theorem with an example for DC excitation. [7M]
 - (b) Find the Thevenin's voltage and Thevenin's resistance of the network shown in Figure 3. [7M]

Figure 3

- 4. (a) Derive the condition for Norton's theorem with AC excitation and verify with an example. [7M]
 - (b) Calculate the maximum power delivered across R_L of the circuit shown in Figure 4. [7M]

Figure 4

MODULE - IV

- 5. (a) State Faraday's law of electro-magnetic induction. Write the similarities between magnetic and electric circuits. [7M]
 - (b) Find the voltage across 5Ω resistor in the circuit for dots as given in the Figure 5. [7M]

Figure 5

- 6. (a) Explain about the self-inductance and mutual inductance between the coils. [7M]
 - (b) Calculate the equivalent self inductance of the following inductive circuit shown in Figure 6. [7M]

Figure 6

$\mathbf{MODULE} - \mathbf{V}$

- 7. (a) What are ABCD transmission parameters? Explain with corresponding equations. Write the condition for symmetry and reciprocity of ABCD parameters. [7M]
 - (b) The parameters of two port network are $Z_{11} = 20\Omega, Z_{22} = 30\Omega, Z_{12} = Z_{21} = 10\Omega$. Determine Y and H parameters of the network. [7M]
- 8. (a) What is meant by duality? Explain the principle of duality. What is the procedure to obtain the dual network? [7M]
 - (b) Write the tie-set matrix for the network graph shown in Figure 7 by selecting a tree with branches 3,4,5. [7M]

Figure 7

