INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
B.TECH II Semester End Examinations (Regular) AUGUST- 2021

Regulation:UG20
MATHEMATICAL TRANSFORM TECHNIQUES
Time: 3 Hours
(ECE|EEE|AE|ME|CE)
Max Marks: 70
Answer all questions in Modules I and II
Answer ONE out of two questions from Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V)
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) State convolution theorem in Laplace transforms. Write the Laplace transform of the first derivative and the second derivative.
(b) Find the Laplace transform of $\frac{\cos 2 t-\cos 3 t}{t}$

MODULE - II
2. (a) State Fourier integral theorem. Write the Fourier sine integral and cosine integral of $f(x)$. Also state Fourier transform of $f(x)$.
(b) Find the Fourier sine and cosine transform of $\mathrm{f}(\mathrm{x})=\mathrm{e}^{-a x}$.
3. (a) Evaluate the double integral $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r d r d \theta$
[7M]
(b) Find by triple integration, the volume of the solid bounded by the co-ordinate planes $x=0, y=0, z=0$ and the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$.
4. (a) Determine $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}}\left(x^{2}+y^{2}\right) d y d x$ by changing into polar co-ordinates.
[7M]
(b) Find the volume of tetrahedron bounded by the co-ordinate planes and the plan $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$
[7M]

MODULE - IV

5. (a) Verify Green's theorem for $\int_{C}\left(2 x y-x^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where " C " is bounded by $\mathrm{y}=\mathrm{x}^{2}$ and $y^{2}=x$.
[7M]
(b) Find the work done by the force $\vec{F}=\left(3 x^{2}-6 y z\right) \vec{i}+(2 y+3 x z) \vec{j}+\left(1-4 x y z^{2}\right) \vec{k}$ in moving particle from the point $(0,0,0)$ to the point $(1,1,1)$ along the curve $\mathrm{C}: \mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$.
6. (a) Verify Stokes theorem for the function $\vec{F}=x^{2} \vec{i}+x y \vec{j}$ integrated round the square in the plane $\mathrm{z}=0$ whose sides are along the line $\mathrm{x}=0, \mathrm{y}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}$.
(b) Find the directional derivative of the function $\mathrm{xyz}^{2}+\mathrm{xz}$ at the point $\mathrm{P}(1,1,1)$ in the direction of the normal to the surface $3 x^{2}+y=z$ at $(0,1,1)$.

MODULE - V

7. (a) Eliminate the arbitrary function from the surface $z=x y+f\left(x^{2}+y^{2}\right)$ and hence, obtain the corresponding partial differential equation.
(b) Solve the partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$.
8. (a) Find the differential equation of all spheres whose centres lie on z-axis with a given radius r.
(b) Solve $\left(p^{2}+q^{2}\right) y=q z$
