

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B.TECH II Semester End Examinations (Regular) AUGUST- 2021

Regulation:UG20

MATHEMATICAL TRANSFORM TECHNIQUES

Time: 3 Hours

(ECE|EEE|AE|ME|CE)

Max Marks: 70

Answer all questions in Modules I and II Answer ONE out of two questions from Modules III, IV and V

(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V)

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

$\mathbf{MODULE}-\mathbf{I}$

1.	(a)	State convolution theorem in Laplace transforms. Write the Laplace transform of the first	
		derivative and the second derivative.	[7M]
	(b)	Find the Laplace transform of $\frac{\cos 2t - \cos 3t}{t}$	[7M]

$\mathbf{MODULE}-\mathbf{II}$

2.	(a)	State Fourier integral theorem. Write the Fourier sine integral and cosine integral of $f(x)$. state Fourier transform of $f(x)$.	Also [7M]
	(b)	Find the Fourier sine and cosine transform of $f(x) = e^{-ax}$.	[7M]
		$\mathbf{MODULE} - \mathbf{III}$	
3.	(a)	Evaluate the double integral $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r dr d\theta$	[7M]
	(b)	Find by triple integration, the volume of the solid bounded by the co-ordinate planes $x=0,y=0$ and the plane $x+y+z=1$.	0,z=0 [7M]
4.	(a) (b)	Determine $\int_0^2 \int_0^{\sqrt{2x-x^2}} (x^2 + y^2) dy dx$ by changing into polar co-ordinates. Find the volume of tetrahedron bounded by the co-ordinate planes and the plan $\frac{x}{a} + \frac{y}{b} + \frac{y}{a}$	$[7M]$ $\frac{z}{c} = 1$ $[7M]$

$\mathbf{MODULE}-\mathbf{IV}$

5. (a) Verify Green's theorem for $\int_C (2xy - x^2)dx + (x^2 + y^2)dy$ where "C" is bounded by $y=x^2$ and $y^2=x$. [7M]

(b) Find the work done by the force $\vec{F} = (3x^2 - 6yz)\vec{i} + (2y + 3xz)\vec{j} + (1 - 4xyz^2)\vec{k}$ in moving particle from the point (0,0,0) to the point(1,1,1) along the curve C: x=t, y=t², z=t³. [7M]

6. (a) Verify Stokes theorem for the function $\vec{F} = x^2 \vec{i} + xy \vec{j}$ integrated round the square in the plane z=0 whose sides are along the line x=0, y=0, x=a, y=a. [7M]

(b) Find the directional derivative of the function xyz^2+xz at the point P(1,1,1) in the direction of the normal to the surface $3xy^2+y=z$ at (0,1,1). [7M]

$\mathbf{MODULE}-\mathbf{V}$

- 7. (a) Eliminate the arbitrary function from the surface $z = xy + f(x^2+y^2)$ and hence, obtain the corresponding partial differential equation. [7M]
 - (b) Solve the partial differential equation $x(y^2+z)p y(x^2+z)q = (x^2-y^2)z.$ [7M]
- 8. (a) Find the differential equation of all spheres whose centres lie on z-axis with a given radius r.

(b) Solve
$$(p^2+q^2)y = qz$$
 [7M]

 $-\circ\circ\bigcirc\circ\circ-$

[7M]