INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal-500043, Hyderabad
B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY 2022

Regulation:UG20
AERODYNAMICS
Time: 3 Hours
(AERONAUTICAL ENGINEERING)

Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) A uniform flow has a velocity V , show that this flow is physically possible incompressible flow and that it is irrotational.
[BL: Apply| CO: 1|Marks: 7]
(b) The lift on a spinning circular cylinder in a freestream with a velocity of $30 \mathrm{~m} / \mathrm{s}$ and at standard sea level conditions is $6 \mathrm{~N} / \mathrm{m}$ of span. Calculate the circulation around the cylinder.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Illustrate the effect of trailing edge deflection of a high lift devices on the aerodynamic coefficients and flow pattern.
[BL: Understand| CO: $2 \mid$ Marks: 7]
(b) An NACA 2412 airfoil has a chord of 0.64 m in an airstream at standard sea level conditions. The free stream velocity is $80 \mathrm{~m} / \mathrm{s}$. The lift per unit span is $1264 \mathrm{~N} / \mathrm{m}$. Calculate the strength of the steady-state starting vortex.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Discuss in detail about the flow past finite wings and explain how are the wing tip vortices created.
[BL: Understand| CO: 3|Marks: 7]
(b) Consider a finite wing with an aspect ratio of 10 and a taper ratio of 0.8 . The airfoil section is thin and symmetric. Calculate the lift and induced drag coefficients for the wing when it is at an angle of attack of 5 degree. Assume that $\delta=\tau=0.055$.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Develop the expression for velocity induced by an infinite long vortex filament at any arbitrary point located at a distance 'r' from the vortex filament. [BL: Apply| CO: 4|Marks: 7]
(b) The measured lift slope for the NACA 23012 airfoil is 0.1080 degree $^{-1}$, and $\alpha_{L}=0=-1.3$ degree. Consider a finite wing using this airfoil, with $\mathrm{AR}=8$ and taper ratio $=0.8$. Assume that $\delta=\tau=0.055$. Calculate the lift and induced drag coefficients for this wing at a geometric angle of attack $=6$ degree.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Illustrate the position of circle for tranformation of circle into flat plate, ellipse, circular arc, symmetrical and cambered airfoil in Kutta- Joukowski transformation.
[BL: Understand| CO: $5 \mid$ Marks: 7$]$
(b) A particle moves in the xy-plane such that its position (x, y) as a function of time t is given by: $[z=i+2 t / t-i]$. Solve the velocity and acceleration of the particle in terms of t.
[BL: Apply| CO: 5|Marks: 7]
6. (a) Discuss about the effect of propeller slip stream and flow from wing on the tail unit of aircraft.
[BL: Understand| CO: 5|Marks: 7]
(b) Explain the Kutta-Joukowski transformation. Solve the transformation of the uniform flow parallel to the y-axis, in the z-plane, using the transformation function $\zeta=z^{2}$.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Illustrate transition boundary layer with neat diagram. Demonstrate various methods utilized to control boundary layer separation.
[BL: Understand| CO: $6 \mid$ Marks: 7$]$
(b) The wing on a Piper Cherokee general aviation aircraft is rectangular, with a span of 9.75 m and a chord of 1.6 m . The aircraft is flying at cruising speed ($63 \mathrm{~m} / \mathrm{s}$) at sea level. Assume that the skin friction drag on the wing can be approximated by the drag on a flat plate of the same dimensions. Calculate the boundary-layer thickness at the trailing edge for completely laminar flow. The standard sea level value of viscosity coefficient for air is $\mu=1.7894 \times 10^{-5} \mathrm{~kg} /(\mathrm{m}-\mathrm{s})$
[BL: Apply| CO: 6|Marks: 7]
8. (a) Summarize the steps invloved in calculating accurately the boundary-layer properties.
[BL: Understand| CO: 6|Marks: 7]
(b) Consider a flow with the conditions $p_{\infty}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}, T_{\infty}=288 \mathrm{~K}, p_{\infty}=1.22 \mathrm{~kg} / \mathrm{m}^{3}$ and
$\mu_{\infty}=1.7894 \times 10^{-5} \mathrm{~kg} /(\mathrm{m})(\mathrm{s})$ over a flat plate with a chord length of 2 m and 20 m width kept at zero angle of attack. Assume the wall temperature is the adiabatic wall temperature $T_{\text {aw }}$. Calculate the friction drag on the plate assuming a turbulent boundary layer for a free stream velocity of 100 m / s. Given $\mathrm{R}=287 \mathrm{~J} / \mathrm{KgK}, C_{f} / C_{f w}=0.85$.
[BL: Apply| CO: 6|Marks: 7]
