



### INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) (Dundigal-500043, Hyderabad)

# B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY 2022 Regulation: UG20

#### FOUNDATIONS OF MACHINE LEARNING

Time: 3 Hours (CSE-AI&ML) Max Marks: 70

## Answer ALL questions in Module I and II Answer ONE out of two questions in Modules III, IV and V

(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

#### MODULE - I

- 1. (a) List the steps of developing machine learning application. Explain with example importance of machine learning.

  [BL: Understand | CO: 1 | Marks: 7]
  - (b) What do you mean by learning problem? Explain with example. [BL: Apply] CO: 1|Marks: 7]

#### MODULE - II

- 2. (a) Describe the essential steps of logistic regression. Why it is being used for classification? Elaborate. [BL: Understand] CO: 2|Marks: 7]
  - (b) Create the relationship model for the given dataset in Figure 1 to find the relation between height and weight parameters. Predict Y for X=154,161,178 [BL: Apply| CO: 2|Marks: 7]

| Sr No. | Height(X) | Weight(y) |  |
|--------|-----------|-----------|--|
| 1      | 151       | 63        |  |
| 2      | 174       | 81        |  |
| 3      | 138       | 56        |  |
| 4      | 186       | 91        |  |
| 5      | 128       | 47        |  |
| 6      | 136       | 57        |  |
| 7      | 179       | 76        |  |
| 8      | 163       | 72        |  |
| 9      | 152       | 62        |  |
| 10     | 131       | 48        |  |

Figure 1

#### $\mathbf{MODULE-III}$

3. (a) How to compute expected value and variance of a random variable? Explain the features of Bayesian learning method. [BL: Understand| CO: 3|Marks: 7]

(b) Given all the previous patient symptoms and diagnoses, predict whether the patient is suffering from Flu or not based upon data given in Table 1 for the new patient by using Naïve Bayes classifier.

[BL: Apply CO: 3 | Marks: 7]

Table 1

| Chills | Runny Nose | Headache | Fever | Flu? |
|--------|------------|----------|-------|------|
| Y      | N          | Mild     | Y     | N    |
| Y      | Y          | No       | N     | Y    |
| Y      | N          | Strong   | Y     | Y    |
| N      | Y          | Mild     | N     | Y    |
| N      | N          | No       | N     | N    |
| N      | Y          | Strong   | Y     | Y    |
| N      | Y          | Strong   | N     | N    |
| Y      | Y          | Mild     | Y     | Y    |

Test data: Chills = Y, Runny Nose = N, Headache = Mild, Fever = Y, Flu = ?

4. (a) Describe in detail about bagging, bootstrapping, boosting, and stacking in machine learning.

[BL: Understand | CO: 4 | Marks: 7]

(b) "You came to know that your model is suffering from low bias and high variance". Which algorithm should you use to tackle it? Why? [BL: Apply| CO: 4|Marks: 7]

#### MODULE - IV

5. (a) Discuss in detail about distance based clustering. Write its importance in machine learning.

[BL: Understand CO: 5 | Marks: 7]

- (b) How to select the features from the given dataset for proper functioning of machine learning algorithm. [BL: Apply| CO: 5|Marks: 7]
- 6. (a) What is instance based learning? Write about principle component analysis in detail.

[BL: Understand | CO: 5|Marks: 7]

(b) Apply K-means clustering for the following dataset for two clusters are given in Table 2: The initial clusters are C1(185,72) and C2(170,56). [BL: Apply| CO: 5|Marks: 7]

Table 2

| Sample No. | X   | Y  |
|------------|-----|----|
| 1          | 185 | 72 |
| 2          | 170 | 56 |
| 3          | 168 | 60 |
| 4          | 179 | 68 |
| 5          | 182 | 72 |
| 6          | 188 | 77 |

#### MODULE - V

- 7. (a) Discuss in detail about soft margin SVM. Explain how support vector machine can be used for classification of linearly separable data. [BL: Understand | CO: 6 | Marks: 7]
  - (b) Cluster the following eight points (with (x, y) representing locations) into three clusters by using k-means clustering: A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9) Initial cluster centers are: A1(2, 10), A4(5, 8) and A7(1, 2). [BL: Apply| CO: 6|Marks: 7]
- 8. (a) Describe nearest-neighbor classification in detail. Interpret the role of radial basis function in separating nonlinear patterns [BL: Understand | CO: 6 | Marks: 7]
  - (b) Find the optimal hyperplane by using SVM for the data points: (1,1)(2,1)(1,-1)(2,-1)(4,0)(5,1) (5,-1) (6,0). [BL: Apply| CO: 6|Marks: 7]

 $-\circ\circ\bigcirc\circ\circ-$