INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal-500043, Hyderabad
$\begin{array}{ll}\text { B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY } 2022 \\ \text { Regulation:UG20 } \\ \\ & \text { DESIGN AND ANALYSIS OF ALGORITHMS } \\ 3 \text { Hours } & (\mathrm{CSE}|\mathrm{CSE}(\mathrm{AI} \mathrm{\& ML})| \mathrm{CSE}(\mathrm{CS})|\operatorname{CSE}(D S)| \text { CSIT } \mid \text { IT) Max Marks: } 70\end{array}$
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Explain the various asymptotic notations and compare asymptotic analysis with amortized analysis. [BL: Understand| CO: 1|Marks: 7]
(b) Analyze the worst case and best case of the quicksort algorithm. Sort the following elements using quicksort
38081606795724560258047045
[BL: Apply|| CO: 1|Marks: 7]

MODULE - II

2. (a) Define biconnected components and articulation points. Write an algorithm to find biconnected components.
[BL: Understand| CO: 2|Marks: 7]
(b) Explain DFS method. Apply DFS traversal on the graph given in Figure 1 and analyze the algorithm.
[BL:Apply | CO: 2|Marks: 7]

Figure 1

MODULE - III

3. (a) Write an algorithm to find the single source shortest path problem and demonstarte with an example.
[BL: Understand| CO: 3|Marks: 7]
(b) Considering the following graph given in Figure 2, find the minimum cost spanning tree using prim's algorithm.
[BL: Apply|| CO: 3|Marks: 7]

Figure 2
4. (a) Apply dynamic programming to obtain optimal binary search tree for the identifier set (a1, a2, a3, $\mathrm{a} 4)=(\mathrm{cin}$, for, int, while) with $(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4)=(1,4,2,1),(\mathrm{q} 0, \mathrm{q} 1, \mathrm{q} 2, \mathrm{q} 3, \mathrm{q} 4)=(4,2,4,1,1)$ and also write algorithm for its construction.
[BL: Apply|| CO: 4|Marks: 7]
(b) Solve the following instance of $0 / 1$ Knapsack problem using Dynamic programming $\mathrm{n}=3$; (W1, $\mathrm{W} 2, \mathrm{~W} 3)=(3,5,7) ;(\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3)=(3,7,12) ; \mathrm{M}=4$.
[BL: Apply|| CO: 4|Marks: 7]

MODULE - IV

5. (a) Briefly explain graph coloring problem with example. Write a program to illustrate the N queens problem.
[BL: Understand| CO: 5|Marks: 7]
(b) Describe sum of subset problem with example. Solve the following instance of the sum of subsets problem $S=\{5,10,12,13,15,18\}$ and $\mathrm{d}=30$.
[BL: Apply|| CO: $5 \mid$ Marks: 7]
6. (a) Relate Hamiltonian cycle with travelling sales person problem and also give the backtracking solution vector that finds all Hamiltonian cycles for any directed or undirected graph.
[BL: Understand| CO: 5|Marks: 7]
(b) Write and apply the backtracking algorithm to find chromatic number for the graph given in Figure 3
[BL: Apply| CO: 5|Marks: 7]

Figure 3
MODULE - V
7. (a) Discuss in detail about the class P, NP, NP-hard and NP-complete problems.
[BL: Understand| CO: 6|Marks: 7]
(b) Briefly discuss about Clique decision problem. Showthat Clique Decision problem is NP-Complete
[BL: Apply| CO: 6|Marks: 7]
8. (a) State Cook's theorem and explain the proof in detail.. [BL: Understand CO: $6 \mid$ Marks: 7]
(b) Compare deterministic and nondeterministic algorithm. Show that satisfiability of Boolean formula in 3 conjective normal form is NP-complete.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

