B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY 2022
Regulation:UG20
ELECTROMAGNETIC WAVES AND TRANSMISSION LINES
Hours (ELECTRONICS AND COMMUNICATION ENGINEERING)
Max Marks: 70

Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Show that the electric field at any point due to an infinite sheet of charge is independent of the distance to the point from the sheet.
[BL: Apply| CO: 1|Marks: 7]
(b) A pair of 200 mm long concentric cylindrical conductors of radii 50 mm and 100 mm ,is filled with a dielectric with $\epsilon=10 \epsilon_{0}$. A voltage is applied between the conductors which establishes $\vec{E}=\frac{10^{6}}{r} \widehat{a_{r}}$ Calculate capacitance, voltage applied and energy stored.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Determine Maxwell's equations in integral form. Based on this obtain the corresponding differential equation by applying Stroke's theorem.
[BL: Apply| CO: 2|Marks: 7]
(b) If a coil of $800 \mu \mathrm{H}$ is magnetically coupled to another coil of $200 \mu \mathrm{H}$ and the coefficient of coupling between two coils is 0.05 . Calculate inductance if two coils are connected in
i) Series aiding
ii) Series opposing
iii)Parallel aiding
iv) Parallel opposing.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Discuss about reflection and refraction of plane waves for normal incidence at the interface between two dielectrics.
[BL: Understand| CO: 3|Marks: 7]
(b) Find the amplitudes of reflected and transmitted fields (electric and magnetic both) at the interface of two regions, if $E_{i}=1.5 \mathrm{mV} / \mathrm{m}$ in region 1 for which $\epsilon_{r 1}=8.5, \mu_{r}=1$ and $\sigma=0$ and region 2 is a free space.
[BL: Apply| CO: 3|Marks: 7]
4. (a) What are the properties of uniform plane wave? Show that for a uniform plane wave, the field components are zero in the direction of propagation of it.
[BL: Understand| CO: 4|Marks: 7]
(b) Wet marshy soil is characterized by $\sigma=10^{-2} s / m, \epsilon_{r}=15$ and $\mu_{r}=1$. At frequencies $60 \mathrm{~Hz}, 1 \mathrm{MHz}$, 100 MHz and 10 GHz , indicate whether soil be considered a conductor or a dielectric.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Explain the concept of infinite line and hence obtain the general expression for the line characteristic impedance using the lossy line equivalent circuit.
[BL: Understand| CO: 5|Marks: 7]
(b) An open wire line having $R=10.15 \Omega / \mathrm{km}, L=3.93 \mathrm{mH} / \mathrm{km}, C=0.00797 \mathrm{~F} / \mathrm{km}$ and $G=$ $0.29 \mu \mho / \mathrm{km}$ is 100 km long and terminated in Z_{0}. Find $Z_{0}, \alpha, \beta, \gamma, V_{p}, \lambda$ for 796 Hz .
[BL: Apply| CO: 5|Marks: 7]
6. (a) Classify various types of distortions that occur when waves propagate through the transmission line. Explain in detail.
[BL: Understand| CO: $5 \mid$ Marks: 7]
(b) When a certain dissipationless line of 100 km length is terminated in an unknown load impedance Z_{R}, the input impedance is measured to be $536 \angle 20^{0} \Omega$ and the phase constant $\beta=0.1 \mathrm{rads} / \mathrm{Km}$. Determine the primary constants of the line and the load impedance Z_{R}, if the characteristic impedance of the line is 625Ω and the operating frequency $\omega=5000 \mathrm{rad} / \mathrm{sec}$.
[BL: Apply| CO: $5 \mid$ Marks: 7]

MODULE - V

7. (a) Outline the principle of impedance matching using a single stub tuner and list out its limitations.
[BL: Understand| CO: $6 \mid$ Marks: 7]
(b) A 50Ω air filled co-axial line is terminated with a complex load impedance of $(80-j 60) \Omega$. Design a double stub matching system using short circuited co-axial lines of characteristic impedance 50Ω each. Assume spacing between stubs equal to $(3 \lambda / 8)$ at a frequency of 500 MHz .
[BL: Apply| CO: 6|Marks: 7]
8. (a) Derive the expressions of input impedance of SC and OC lines and explain how a UHF line can be used as inductance or a capacitance.
[BL: Apply| CO: 6|Marks: 7]
(b) A 50Ω RF line is connected to a load of $(75+j 40) \Omega$. Estimate the reflection coefficient, VSWR, $Z_{\min }, Z_{\max }$. Also find its impedance if the line length is 0.5λ
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

