INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)
 Dundigal-500043, Hyderabad
 B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY 2022 Regulation:UG20 IC APPLICATIONS
 Time: 3 Hours (ELECTRONICS AND COMMUNICATION ENGINEERING) Max Marks: 70

Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Compare and contrast the DC and AC characteristics of an ideal op-amp with relevant expressions. [BL: Understand| CO: 1|Marks: 7]
(b) Design the dual input balanced output differential amplifier to meet the following specifications and draw the circuit with designed values. $R_{c}=2.2 K \Omega, R_{E}=4.7 K \Omega, R_{i n 1}=R_{\text {in2 }}=50 \Omega$,
$+V_{c c}=+10 V,-V_{E E}=-10 \mathrm{~V}$ and the transistor is the CA 3086 with $\beta_{d c}=\beta_{a c}=100$ and $V_{B E}=0.715 \mathrm{~V}$ typically. i) Determine the $I_{c q}$ and $V C_{E q}$
ii) Determine voltage gain
iii) Determine the input and output resistances
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Construct the circuit diagram of differentiator using op-amp and explain its operation with relevant wave forms
[BL: Apply| CO: $2 \mid$ Marks: 7]
(b) Build an instrumentation amplifier to have a variable differential gain in the range $5-20 \mathrm{~dB}$. Use a 50 kilo-ohm potentiometer.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) With the help of schematic diagram of IC 555 timer, explain how it can be used as mono stable multivibrator and astable multivibrator.
[BL: Understand| CO: 3|Marks: 7]
(b) Model the 1 KHz square wave form generator using IC 555 timer for duty cycle i) $\mathrm{D}=25 \%$ ii) $\mathrm{D}=50 \%$ and draw the waveforms.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Demonstrate the circuit diagram of first order high pass filter and its frequency response. Derive the expression for output voltage.
[BL: Understand| CO: 4|Marks: 7]
(b) Compute the free running frequency f_{o}, lock in range and capture range of PLL. Assume $R_{T}=20 k \Omega, C_{T}=0.01 \mu F, C=1 \mu F$ and supply voltage is $\pm 6 \mathrm{v}$.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Draw the circuit of weighted resistor DAC and derive expression for output analog voltage V_{0}
[BL: Understand| CO: $5 \mid$ Marks: 7]
(b) Consider a 10 bit D/A converter having a reference voltage of 10 V . What is the binary digital input needed to get 4.5 V output? What outputs are obtained from the converter for the inputs of i) Binary 0010110101 ii) decimal 520 ?
[BL: Apply| CO: 5|Marks: 7]
6. (a) Explain the working of a dual slope A/D converter. Enlist the advantages and disadvantages of dual slope ADC.
[BL: Understand| CO: 5|Marks: 7]
(b) Least significant bit of a 9 -bit DAC is represented by 19.6 mv . If an input of 9 zero bits is represented by 0 volts.
i) Find the output of the DAC for an input 101101101 and 01101 1011?
ii) What is the full scale reading (FSR) of this DAC?
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Write short notes on Ring Counter and Johnson counter. Discuss the logic levels and noise margin with reference to TTL family.
[BL: Understand| CO: 6|Marks: 7]
(b) List the parameters which are used to compare logic families. Design a 4-bit bidirectional shift register with parallel load
[BL: Apply| CO: 6|Marks: 7]
8. (a) What is the necessity of separate interfacing circuit to connect CMOS gate to TTL gate? Draw the interface circuit and explain the operation.
[BL: Understand| CO: 6|Marks: 7]
(b) Illustrate the CMOS transmission gate and realize a 2×1 MUX using this transmission gate.
[BL: Apply| CO: 6|Marks: 7]
