INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

(Dundigal-500043, Hyderabad)

B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY 2022
 Regulation:UG20 COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTIONS

Time: 3 Hours (Electrical and electronics engineering) Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Find the bilinear transform which maps the points $z=0,-i,-1$ into the points $w=i, 1,0$.
[BL: Understand| CO: 1|Marks: 7]
(b) Show that the function $f(z)=\left\{\begin{array}{ll}\frac{(\bar{z})^{2}}{z} & z \neq 0 \\ 0 & z=0\end{array}\right.$ is not differentiable, even though Cauchy-Riemann equations are satisfied there.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) State Cauchy integral theorem and use it to evaluate the integral $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z$ where C is $|z|=4$ [BL: Understand| CO: $2 \mid$ Marks: 7$]$
(b) Evaluate $\oint_{C}(x+y) d x+(y-2 x) d y$ along:
i) The parabola $y=2 x^{2}$ from $(1,2)$ to $(2,8)$
ii) The straight lines from $(1,1)$ to $(1,8)$ and then from $(1,8)$ to $(2,8)$
iii) The straight line from $(1,1)$ to $(2,8)$.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Find the Maclaurin's series expansion of the function $\sin z$. [BL: Understand| CO: 3|Marks: 7]
(b) State Cauchy's residue theorem. Hence evaluate $\int_{C} \frac{e^{z} d z}{\sin z}$ where C is the circle $|z|=1$.
[BL: Understand| CO: 3|Marks: 7]
4. (a) Find the nature of singularities of the following functions
[BL: Apply| CO: 4|Marks: 7]
i) $f_{1}(z)=\frac{z-\sin z}{z^{4}}$
ii) $f_{2}(z)=\frac{1-e^{z}}{1+e^{z}}$
(b) Give two Laurent series expansions in the power of z for the function $f(z)=\frac{1}{z^{2}(1-z)}$ and specify the regions in which those expansions are valid
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) Let X be a random variable of sum of two numbers in throwing two fair dice. Find the probability distribution of X , mean, variance.
[BL: Apply| CO: 5|Marks: 7]
(b) A random variable X has the following probability distribution given in Table 1

Table 1

x	1	2	3	4	5	6
$\mathrm{P}(\mathrm{x})$	k	3 k	5 k	7 k	9 k	11 k

Determine i) k ii) $\mathrm{P}(1 \leq x \leq 5)$ iii) $\mathrm{P}(\mathrm{x}>3)$
[BL: Understand| CO: 5|Marks: 7]
6. (a) If X is a continuous random variable and $Y=a X+b$, prove that $\mathrm{E}(\mathrm{Y})=\mathrm{aE}(\mathrm{X})+\mathrm{b}$ and $V(Y)=$ $a^{2} V(X)$, where V stands for variance and a , b are constants. [BL: Understand| CO: 5|Marks: 7]
(b) A random variable X has probability density function $f_{x}(x)= \begin{cases}5 e^{-5 x} & 0 \leq x \leq \infty \\ 0 & \text { elsewhere }\end{cases}$ Find i) $\mathrm{E}(\mathrm{X})$ ii) $E\left[(X-1)^{2}\right]$
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Write about the Binomial and Poisson distributions with their characteristics.
[BL: Understand| CO: 6|Marks: 7]
(b) A machine manufacturing bolts is known to produce 5% defective. In a random sample of 10 bolts, compute the probability that there are
i) Exactly 3 defective bolts
ii) Not more than 3 defective bolt
[BL: Apply| CO: 6|Marks: 7]
8. (a) The marks obtained by 500 students is normally distributed with mean 65% and standard deviation 8%. Determine how many get more than 80%.
[BL: Understand| CO: 6|Marks: 7]
(b) A missile can be accidentally launched if two relays A and B both have failed. The probabilities of A and B failing are known to be 0.01 and 0.03 respectively. It is also known that B is more likely to fail (probability 0.06) if A failed.
i) What is the probability of an accidental missile launch?
ii) What is the probability that A will fail if B has failed?
iii) Are events "A fails" and "B fails" statistically independent?
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

