INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal-500043, Hyderabad

B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY 2022
 Regulation:UG20
 COMPLEX ANALYSIS AND SPECIAL FUNCTIONS

Time: 3 Hours (ELECTRONICS AND COMMUNICATION ENGINEERING) Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Find the bilinear transform which maps the points $z=0,-i,-1$ into the points $w=i, 1,0$.
[BL: Understand| CO: 1|Marks: 7]
(b) Show that the function $f(z)=\left\{\begin{array}{ll}\frac{(\bar{z})^{2}}{z} & z \neq 0 \\ 0 & z=0\end{array}\right.$ is not differentiable at $\mathrm{z}=0$ even though Cauchy-Riemann equations are satisfied there.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) State Cauchy integral theorem and use it to evaluate the integral $\int_{C} \frac{e^{z}}{\left(z^{2}+\pi^{2}\right)^{2}} \mathrm{dz}$ where C is $|z|=4$.
[BL: Understand| CO: 2|Marks: 7]
(b) Evaluate $\oint_{C}(x+y) d x+(y-2 x) d y$ along:
i) The parabola $y=2 x^{2}$ from $(1,2)$ to $(2,8)$
ii) The straight lines from $(1,1)$ to $(1,8)$ and then from $(1,8)$ to $(2,8)$
iii) The straight line from $(1,1)$ to $(2,8)$.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) State Cauchy's residue theorem. Hence evaluate $\int_{C} \frac{e^{z} d z}{\sin z}$ where C is the circle $|z|=1$.
[BL: Apply| CO: 3|Marks: 7]
(b) Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta d \theta}{5-4 \cos \theta}=\frac{\pi}{6}$ using residue theorem.
[BL: Apply| CO: 4|Marks: 7]
4. (a) Find the nature of singularities of the following functions
[BL: Understand| CO: 3|Marks: 7]
i) $f_{1}(z)=\frac{z-\sin z}{z^{4}}$
ii) $f_{2}(z)=\frac{1-e^{z}}{1+e^{z}}$
(b) Give two Laurent series expansions in the power of z for the function $f(z)=\frac{1}{z^{2}(1-z)}$ and specify the regions in which those expansions are valid. [BL: Understand| CO: 4|Marks: 7]
5. (a) Prove that $\frac{\beta(p, q+1)}{q}=\frac{\beta(p+1, q)}{q}=\frac{\beta(p, q)}{p+q}$
(b) Evaluate $\int_{0}^{1} x^{3} \sqrt{1-x}$ dx using Beta Gamma functions
[BL: Understand| CO: 5|Marks: 7]
6. (a) Show that $\Gamma(1 / 2) \Gamma(2 n)=2^{2 n-1} \Gamma(n) \Gamma\left(n+\frac{1}{2}\right)$
[BL: Understand| CO: $5 \mid$ Marks: 7]
(b) By using techniques involving the Gamma function, find the exact value of $\int_{0}^{\infty} x^{6} e^{-4 x^{2}} \mathrm{dx}$. Give the answer in the form $\mathrm{k} \sqrt{\pi}$, where k is a rational constant
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) State and prove generating function of Bessel's function.
(b) Show that $\left[J_{1 / 2}(x)\right]^{2}+\left[J_{-1 / 2}(x)\right]^{2}=\frac{2}{\pi x}$.
8. (a) Show that $\frac{\mathrm{d}}{\mathrm{d} x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$
(b) Prove that $\frac{\mathrm{d}}{\mathrm{d} x}\left[J_{n}^{2}(x)+J_{n+1}^{2}(x)\right]=2\left[\frac{n}{x} J_{n}^{2}(x)-\frac{n+1}{x} J_{n+1}^{2}(x)\right]$
[BL: Understand| CO: 6|Marks: 7]
[BL: Apply| CO: 6|Marks: 7]
[BL: Understand| CO: 6|Marks: 7]
[BL: Apply| CO: 6|Marks: 7]
