INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal-500043, Hyderabad

B.Tech IV SEMESTER END EXAMINATIONS (REGULAR) - JULY 2022
 Regulation:UG20
 FLUID MECHANICS AND HYDRAULIC MACHINES

Time: 3 Hours
(MECHANICAL ENGINEERING)
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
(NOTE: Provision is given to answer TWO questions from among one of the Modules III / IV / V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Explain the following terms: i) Mass density, ii) Weight density, iii) Specific volume, iv) Specific gravity, v) Viscosity, vi) Surface tension, vii) Compressibility. [BL: Remember| CO: 1|Marks: 7]
(b) A 400 mm diameter shaft is rotating at 200 RPM in a bearing of length 120 mm .If the thickness of oil film is 1.5 mm and the dynamic viscosity of the oil is $0.7 \mathrm{Ns} / \mathrm{m}^{2}$, determine:
i) Torque required to overcome friction in bearing.
ii) Power utilized in overcoming viscous resistance.

Assume a linear velocity profile.
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Illustrate the terms path line, streamline, stream tube and streak line with the help of neat sketches.
[BL: Understand| CO: $2 \mid$ Marks: 7]
(b) For a three-dimensional flow the velocity distribution is given by $u=-\mathrm{x}, \mathrm{v}=3-\mathrm{y}$ and $\mathrm{w}=3-\mathrm{z}$. What is the equation of a streamline passing through $(1,2,2)$?
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) Discuss the terms - boundary layer thickness, displacement thickness, momentum thickness and energy thickness.
[BL: Understand| CO: 3|Marks: 7]
(b) A plate $450 \mathrm{~mm} \times 150 \mathrm{~mm}$ has been placed longitudinally in a stream of crude oil (specific gravity 0.925 and kinematic viscosity of 0.9 stoke) which flows with velocity of $6 \mathrm{~m} / \mathrm{s}$. Calculate:
i) Thickness of the boundary layer at the trailing edge
ii) Shear stress at the trailing edge.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Determine an expression for the theoretical discharge through a venturi meter. Explain the working of a Venturi meter with a neat sketch.
[BL: Apply| CO: 4|Marks: 7]
(b) In a pipe of 300 mm diameter and 800 m length, an oil of specific gravity 0.8 is flowing at the rate of $0.45 \mathrm{~m}^{3} / \mathrm{s}$. Find:
i) Head lost due to friction
ii) Power required to maintain the flow

Take kinematic viscosity of oil as 0.3 stoke.
[BL: Apply| CO: 4|Marks: 7]

MODULE - IV

5. (a) How to govern the impulse turbines? Provide a comparison between impulse turbine and reaction turbine.
[BL: Understand| CO: 5|Marks: 7]
(b) Calculate the diameter and speed of the runner of a Kaplan turbine developing 6000 KW under an effective head of 5 m . Overall efficiency of the turbine is 90%. The diameter ofthe boss is 0.4 times the external diameter of the runner. The turbine speedratio is 2.0 and flowratio 0.6 . What is the specific speed of the turbine?
[BL: Apply| CO: 5|Marks: 7]
6. (a) Briefly explain the construction and working of pelton wheel turbine and also draw velocity triangles of it.
[BL: Understand| CO: 5|Marks: 7]
(b) In an inward flow reaction turbine, the head on the turbine is 32 m . The external and internal diameters are 1.44 m and 0.72 m respectively. The velocity of flow through the runner is constant and equal to $3 \mathrm{~m} / \mathrm{s}$. The guide blade angle is 10° and the runner vanes are rigid at inlet. If the discharge at outlet is radial, determine:
i) The speed of the turbine
ii) The vane angle at outlet of the runner
iii) Hydraulic efficiency.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Classify centrifugal pumps and explain characteristic curves for centrifugal pumps on the basis of characteristic features.
[BL: Understand| CO: 6|Marks: 7]
(b) The impeller of a centrifugal pump having external and internal diameters 500 mm and 250 mm respectively, width at outlet 50 mm and running at 1200 RPM worksagainst a head of 48 m . The velocity of flow through the impeller is constant and equal to $3 \mathrm{~m} / \mathrm{s}$. The vanes are set back at an angle of 40° at outlet. Determine:
i) Inlet vane angle
ii) Work done by the impeller on water per second
iii) Manometric efficiency.
[BL: Apply| CO: 6|Marks: 7]
8. (a) How cavitation occurs in centrifugal pumps? Briefly explain the component parts of a centrifugal pump with the help of a neat sketch.
[BL: Understand| CO: $6 \mid$ Marks: 7]
(b) A single-acting reciprocating pump, running at 50 RPM delivers $0.00736 \mathrm{~m}^{3} / \mathrm{s}$ of water. The diameter of the piston is 200 mm and stroke length 300 mm . The suction and delivery heads are 3.5 m and 11.5 m respectively. Determine:
i) Theoretical discharge
ii) Co-efficient of discharge
iii) Percentage slip of the pump
iv) Power required to run the pump.
[BL: Apply| CO: 6|Marks: 7]

$$
-\circ \circ \bigcirc \circ \circ-
$$

